

Bringing 5G to Space: Wideband & Modulated Test for SatCom Converters

Joel Dunsmore, Keysight Fellow

June 2020

Bringing 5G to Space:

PRESENTATION OUTLINE

- How 5G and Space Communications are Converging
 - Technology Overlaps
 - What's the Same, and What's Different
- Key Building Blocks
 - Wideband, High-Order Modulation
 - Flexible Frequency Conversion
 - Use of Phased-Array or Electronically Steerable Antennas
- Focus on Converter Test
 - Measuring Frequency Flexible Converters
 - Measuring under Modulation Drive
 - Gain/Phase/Group Delay
 - EVM and NPR

Optional Title of the Presentation

How 5G and Space Communications are Converging Technologies, Frequencies, Test Methods

How 5G and Space Communications are Converging

FREQUENCIES

• 5G FR2 Bands: (<u>https://en.wikipedia.org/wiki/5G_NR_frequency_bands</u>)

Frequency Range 2 [edit]

Band +	f (GHz) ♦	Common name 🗢	Subset of band	Uplink / Downlink ^[B 1] (GHz) ♦	Channel bandwidths ^[5] (MHz)
n257	28	LMDS		26.50 - 29.50	50, 100, 200, 400
n258	26	K-band		24.25 - 27.50	50, 100, 200, 400
n260	39	Ka-band		37.00 - 40.00	50, 100, 200, 400
n261	28	Ka-band	n257	27.50 - 28.35	50, 100, 200, 400
Band	f (GHz)	Common name	Subset of band	Uplink / Downlink ^[B 1] (GHz)	Channel bandwidths ^[5] (MHz)

• SpaceX Starlink Bands: (https://arc.aiaa.org/doi/10.2514/6.2019-0768)

Characteristic	Uplink	Downlink
	14.0 -14.5	10.7 - 12.7
Fragmanay (CHz)	27.5 - 29.1	17.8 - 18.6
Frequency (GHZ)	29.5 - 30.0	18.8 - 19.3
	47.2 - 52.4	37.5 - 42.5
Modulation Type	BPSK, QAM	OQPSK, QAM

How 5G and Space Communications are Converging

HIGH ORDER MODULATION FORMAT

• 5G FR2 Bands: OFDM: Multi-channel Orthogonal Frequency Domain Multiplexing

Frequency-Time Representative of an OFDM signal

• Sat Com Modulation: Complex, Multi-channel (e.g. DVB-S2)

http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/wlan-ofdm/content/ofdm_basicprinciplesoverview.htm https://edadocs.software.keysight.com/display/sv201007/DVBS2+Baseband+Verification+Library+Print+View_

Figure 12: 32APSK signal constellation

How 5G and Space Communications are Converging

BEAM FORMING ANTENNA

• 5G FR2 Bands:

• Sat Com Phase Array

Optional Title of the Presentation

Focus On Frequency Converters Test Methods, Signal Drives

Frequency Converter Test

KEY MEASUREMENT AND CHARACTERISTICS

- Gain/Phase/Group Delay vs. Frequency
 - Using Swept CW Signals
 - NEW: Low-Phase Noise VNA Signal Source
 - NEW: Using Modulated Signals
- Compression Vs. Frequency
 - Modulated vs. Not Modulated
- Spurious Test
 - Close in Carrier Spurious
 - Higher Order Mixing Products
- Distortion Characteristics
 - Under CW Drive: Two-Tone Intermodulation Distortion
 - Under Modulated Drive

Error-Vector Magnitude (EVM) Adjacent Channel Power Noise Power Ratio (NPR)

Frequency Converter Test with PNA-X

PNA-X MEASUREMENT CLASSES FOR CONVERTERS

Measurement Class : Channel 1 ×								
Determines the types of measurements available on a channel.								
General	Converters							
⊖ Standard	○ Gain Compression Converters							
○ Active Hot Parameters	○ IM Spectrum Converters							
O Cain Compression	○ Swept IMD Converters							
○ Differential I/Q	O Modulation Distortion Converters							
O IM Spectrum	○ Noise Figure Converters							
⊖ Swept IMD	Scalar Mixer/Converter + Phase							
⊖ Modulation Distortion	○ Vector Mixer/Converter							
O Noise Figure Cold Source								
⊖ Spectrum Analyzer								
O TDR								
Show setup dialog	OK Cancel Help							

DEFINE THE MIXER CONFIGURATION (1 OR 2 LO)

SMC Setup : Channel 1		X		
Sweep Power Mixer Frequency Mixer Pow	er Mixer Setup	*		
Converter Stages: 1 ~	Hardware Configuration Port 3: Thru A Port 4: Thru Path	SMC Setup : Channel 1 Sweep Power Mixer Frequency Mixer Pow	wer Mixer Setup	*
Converter Model: Single Stage		Converter Stages: 2 ~	Hardware Configuration Port 3: Thru Add	Source
Port 1 ~ 1 :		Converter Model: Single Stage	Port 4: Thru Path C	onfiguration
		Port 1 ~ 1 +		Port 2 V
LO1:	Port 4 ~		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		LO1:	Port 4 ~ LO2: M8190PSG ~	-
Defaults	OK Cancel			
		Defaults	OK Cancel Ap	ply Help

DEFINE THE FREQUENCY PLAN: INPUT, LO, OUTPUT

eep Po	wer Mixer Frequ	ency	Mixer Power	Mixer Setup			÷
Aixer Fred	quency						
Input	Center/Span	¥	18.75	60000000 GHz	2.002000000 GHz	Calc Input	
LO1	Fixed	~	10.00	0000000 GHz		⊡ Input > LO	
Output	Center/Span		O+ 27.00	0000000 GHz	2.002000000 GHz	Calc LO	
Output	Center/Span		8.750	0000000 GHz	2.002000000 GHz	Calc Output	

GAIN AND PHASE, SWEPT CW, FULLY CALIBRATED

GROUP DELAY - YELLOW (NORMALIZED, BLUE)

The yellow trace shows the absolute group delay of the converter. The blue trace is a normalized version, which shows the standard deviation noise of ~200 ps, after 10 averages. The lighter trace behind shows noise with no averaging.

This noise is principally due to the phase noise of the source and LO in the PNA, and can only be lowered with sweep averaging; until now.

KEYSIGHT

N522xB/4xB PNA/PNA-X signal source enhancement

EVOLVING ACTIVE COMPONENT MEASUREMENT SOLUTIONS

•New DDS (direct digital synthesizers) source improving:

phase noise by 30 dB
measurement performance of apps: SMC+phase, differential-IQ, modulation distortion, NVNA, iTMSA
dynamic range in sub-THz bands by 30 dB
High-performance analog-SigGen-class low phase
noise (Option UNY, Enhanced low-phase noise)
3rd RF source up to 13.5 GHz on 4-port PNA-X

New DDS Source – best-in-class phase noise

CHALLENGES MET - NO NEED FOR HIGH-PERFORMANCE SIG GEN

GROUP DELAY - YELLOW (NORMALIZED, BLUE)

The new, low phase-noise synthesizer is also much faster. Lower noise means we don't need to have any averaging.

Here we show 10 times lower deviation in the delay trace, at a speed that is 18 time faster! With no averaging at all.

Optional Title of the Presentation

Low Phase Noise Option: 35 TIMES less noise in delay

EXACT SAME SETTINGS (SWEEP IS 72% FASTER)

More Sources

CHALLENGES MET - SYSTEM SIMPLIFICATION

- Complex measurements require multiple instruments, but the 3rd source eliminates the need for an external signal generator for mixer IMD measurements
- Three high-performance analog signal generators
- Can be used as an independent signal generator.

KEYSIGHT TECHNOLOGIES

Two Tone Measurements

NEW: UNY OPTION. LOW PHASE NOISE, LOW SPUR

New DDS Souce - Clean source signal

CHALLENGES MET - CURRENT PNA SOURCE VS NEW DDS PNA SOURCE

Please run the recording Current PNA

1 kHz RBW phase noise is limiting close-in spur dynamic range

Please run the recording

Enhanced PNA with new DDS synthesizers

There are almost no close-in spurs in the DDS source, typically better than -95 dBc. The phase noise does not limit the dynamic range.

Focus On Frequency Converters Noise Power Ratio

Noise Power Ratio: A noise signal with a notch

UNCORRECTED, 1.5 DB P-P, -39 DBC NPR

Noise Power Ratio creates a signal that matches Additive White Gaussian Noise (AWGN).

In the past, a noise source and notch filter were used, but today it is created using an Arbitrary Waveform Generator. The generator is set to create a multitone signal, with specified notch, using constant amplitude, random phase multitone input.

AWGN signals have a perfectly flat spectrum. Here we see a ripple due to loss and mismatch.

Noise Power Ratio: Linear and Non-Linear Correction

CORRECTED SOURCE: 0.1 P-P FLATNESS, -55 DBC NPC

Flatness and Distortion Correction improve the NPR input signal.

NPR is improved by about 18 dB and out of band ACPR is better by 10 dB. The p-p signal flatness is now less than 0.1 dB.

Noise Power Ratio: Output Response

30 DBC NPR

Here is the output response of the frequency converter.

Because it is strongly filtered after the amplifier stage, the ACPR we would expect (near the level of the NPR) does not appear at the output. Thus ACPR cannot be used for a measure of distortion. NPR is clearly seen and we see a 20 dB degradation in distortion for this frequency converter.

SA Segments allow viewing Input and Output

ONLY ON PNA-X

A Setup : Channel 1						×
SA Source Coherence	e Trig. & Pulse	Advanced				*
SA Properties			DC	Sources		
RBW Shape	No Window	\sim	\checkmark	Enable DC output	ts	
Image Reject Type	Normal	~		Enable DC sweep	b	
Image Reject Strength	Normal	~	Nu	mber of DC levels	s 11	
RBW / VBW	1.000000	-	Sv	veep Order		
Span / RBW	106.000000	-		DC before RF		
CF Step Size	100.000000 MHz	🗘 🖂 Au	ito	ORF before DC		
Occupied BW search min	250.000000 MHz	-	E	External Devices	. DC	Sources
Dual-Band Configuration			Embedd	ed LO		
Enable segments auto or	onfiguration					
	-			nable Embedded	LO Setup	
Band Source Port	Center					
1 M8190F ~ Port 1 ~	8.15000000 0	iHz 😫				
2 Inverted Port 2 ~	18.150000000	GHz 🖨				
Band 2 center offset	0.00 Hz					
BASIC advanced Defau	lts	(OK	Cancel	Apply	Help

Noise Power Ratio: Dual Output Response

32 DBC NPR

Here we see a dual segment response. The upper trace shows the input signal.

The lower traces shows the output signal. The segments are each 1.3 GHz wide, and 10 GHz apart, but we see the segments concatenated on the display for easier viewing.

The RF feedthrough of the mixer is seen in the lower trace, left side, and the main output is in the lower trace, right side.

Focus On Frequency Converters Modulated Measurements, Gain/Phase/Delay and EVM

MODULATION/DISTORTION ALLOWS MODULATED INPUT ON CONVERTERS

Measurement Class : Channel 1	×					
Determines the types of measurements	available on a channel.					
General	Converters					
⊖ Standard	○ Gain Compression Converters					
○ Active Hot Parameters	○ IM Spectrum Converters					
○ Gain Compression	Swept mb converters					
○ Differential I/Q	Modulation Distortion Converters					
○ IM Spectrum	O Noise rigure converters					
○ Swept IMD	○ Scalar Mixer/Converter + Phase					
○ Modulation Distortion	○ Vector Mixer/Converter					
\bigcirc Noise Figure Cold Source						
○ Spectrum Analyzer						
○ Vector Signal Analyzer						
OTDR						
Show setup dialog						
Confirm changes New Channel	OK Cancel Help					

SETUP THE DRIVE SIGNAL AND DEFINE THE SIGNAL PATH

Modulati	on Distortio	n Conv	erters Setu	ıp : Channe	12					×										
Sweep	RF Path	Mixer	Modulate	Measure	SA Se	ource	Coherence	Trig. & Pulse	Advanced	*										
S	weep Туре	Fi	xed	~			S			Sweep	RF Path	Mixer	Modulate	Measure	SA	Source	Coherence	Trig. & Pulse	Advanced	*
										Se	et Power At	DUT In	= -10.00dBn	1						
Carri	er Freq In	8	.150000000	GHz	Set Pow	er At	DUT In	~ -10.00 dE	Bm		Source	+0dE	3m	-10.00dBr	n DU	T 10.00	dBm	Recei	ver	
SA	Center In	~ 8	.150000000	GHz 🗘	DC Cont	trol		DC	Sources		Jource			/						
SA S	òpan In	~ 8	08.000000 N	/Hz								*****	/							
Nois	e BW	10) kHz	•							Nominal Src Amp		DUT Input		Nomina DUT Ga	al iin	DUT Outpu	it Rovi	Atten	
Swe	ep Details.									-1	10.00 dE 韋		Port 1	~	0.00 dB	-	Port 2	~ 0 dB	-	
					Ok	(Cancel	Apply	H					[RF Pa	th Config		Offsets and Li	mits	
																OK	Cancel	Apply	He	elp

YOU CAN SELECT A MODULATION FILE, OR CREATE A NEW ONE

Modulation Distortion Converters Setup : Channel 2	· · · ·	×								
Sweep RF Path Mixer Modulate Measure SA Source Coherence Trig. 8	& Pulse Advanced	*								
Converter Stages 1 Converter Stages	Setup									
Input Output=Input+LO	Sweep RF Path	Mixer	Modulate	Measure	SA S	Source	Coherence	Trig. & Pulse	Advanced	*
8.15 GHz X 1 ÷ 1 ÷ IQ 10 GHz	Source	M819	0PSG	~			S			
Source Name Power Leveling Attenuator	Modulation File	D:\Dr	Joel\Kihei\	IMS_Semina	ar\800MFla	t1001ton	es.mdx			
		Lo	ad File		Create		Edit	Pr	operties	
	Enable Modula	tion				_				
	Enable Source	Correcti	on	So	ource Cal .	••				
OK Cancel	Enable Pulse			Pu	Ise Setup					
					0	Ж	Cancel	Apply	He	lp

Optional Title of the Presentation

HERE WE CREATE AN 800 MHZ ADDITIVE-WHITE-GAUSIAN NOISE SIGNAL

An Additive White Gaussian Noise Signal (AWGN) has a Uniform Amplitude Spectrum with Random Phase.

Setting the waveform period makes this have an underlying multitone characteristic

Setting the phase to Random makes this a AWGN signal.

Changing the Random Phase Seed can change the peak-to –average ratio.

Modulation Type Flat To	ones v Source Name M8	190PSG ~	Sample Rate 2.00000000 GHz 🗘 Auto
Signal Signal Span Waveform Period Nmbr Tones, Odd Peak-to-Avg Carrier Offset Phase Type Random Phase Seed DAC Scaling	Desired Priority 800.00000000 MHz ↓ 1.250000 usec ↓ 1001 ↓ 0.000000000 Hz ↓ Random ↓ 1 ↓ 70.00 % ↓	y Calculated 800.000 MHz 1.25000 μs 1001 9.186 dB 0.000000 Hz	Optimize Signal Cancel Contract Contra
The calculation is comp	lete; ready to save.		DisplaySpectrum-IdealNumber of Samples2500Calculated Sample Rate2.00000 GHzMeasurement Time44 msFilenameNone
Calculate Sa	ve Recall D	efaults	OK Cancel Help

HERE WE CREATE AN 800 MHZ ADDITIVE-WHITE-GAUSSIAN NOISE SIGNAL

Here we see the drive signal consisting of 1001 tones. It should have flat response, but due to cables, connectors and mismatch, the power flatness has about 2 dB p-p error. We have a special modulation correction method to perfect the signal.

SOURCE MODULATION CORRECTION MAKES A PERFECT SIGNAL

After correction, the flatness error is less than 0.1 dB p-p; the power level is exactly correct

THE MODULATION WAVEFORM IS MEASURED AT INPUT AND OUTPUT

This upper plot shows traditional swept CW frequency gain and phase.

This lower plot shows the gain and phase under lowpower modulated drive. The results are nearly identical.

KEYSIGHT

GAIN, PHASE, AND GROUP DELAY CAN BE MEASURED USING MODULATION

This upper plot compares gain at 0.5 dB per division. Almost perfect agreement between Swept CW and Wideband modulated signal

This lower plot shows the group delay response. For the first time a VNA can show group delay of a converter, driven with a wideband modulated signal

KEYSIGHT

GAIN COMPRESSION SHOWS A BIG DIFFERENCE FOR MODULATED DRIVE

This upper plot shows -15 dBm drive in Swept CW traces, with 1 dB compression.

This upper plot shows -15 dBm drive for Modulated Signal. The compression is greater, and there is big variation on the signal.

The modulation signal has 9 dB peak-to-avg signal, so 6 dB higher peaks than CW, meaning more compression

Optional Title of the Presentation

Frequency Converter measured in SA Mode

LOW POWER (PURPLE), HIGH POWER (YELLOW)

This upper plot shows -15 dBm Modulated Signal Drive. To top of the yellow traces shows a lot of deviation due to intermodulation of the underlying multitone signal

This lower plot shows the output with -25 dBm signal drive. The tops of the multitone spectrum are smooth and variation is due to the filter in the converter.

KEYSIGH

MODX CAN SHOW DISTORTION DIRECTLY, AS WELL AS COMPUTE EVM

This upper plot shows -30 dBm Modulated Signal Drive. The purple trace (almost off the screen) shows minimal distortion. The EVM of this converter is only 0.4% across the 640 MHz Signal BW.

This lower plot shows -15 dBm signal drive. The distortion is clearly visible in the purple trace. The blue trace is output power, and the "fuzziness" on top is due to distortion. Here the EVM is computed at 6.87%

Embedded LO

SATCOM CONVERTERS WITH BUILT-IN OSCILLATORS

All the test methods presented are supported by option 084:

Automatic detection of frequency for a converter with an embedded LO

KEYSIGHI

Embedded LO				×
✓ Enable Embedded L0 LO Search	D			
Tuning Method	Broadband and	Precise	~	
Tune every	1 sweeps	•		
Broadband Search	3.000 MHz	•		
Noise BW	8.333333 kHz	•		
Max Iterations	5 sweeps	•		
Tolerance	1.000 Hz			
LO Frequency Delta	-3.658 Hz	<u>+</u>	Find Now	
Performing Occupied E SA Start = 180679000 SA Stop = 180689000 Noise BW = 1041.666 Found LO Frequency D Completed in 203.115 r	W Search: 000.000000 Hz 00.000000 Hz 667 Hz 0elta at 0.211800 ns	Hz		~
Default		ОК	Cancel	Help

Add Confidentiality Statement Here

Summary

PNA-X TEST METHODS FOR FREQUENCY CONVERTERS

- PNA-X is recognized as the premier instrument for SatCom and 5G converter test
- New DDS synthesizer hardware greatly improves the system performance in many areas
 - Faster Measurements
 - Much lower residual noise
 - No detectible close-in spurs
 - Narrow-spaced IMD
- New Software Application capabilities apply to wideband modulated signal test
 - Fully corrected NPR Measurements
 - Gain/Phase/Group Delay, with precise results, when driven with wideband modulated signals
 - Distortion of the Frequency Converter under test can be determined
 - Precision EVM measurements on modulated signals through converters are now available
- All Test Methods support converters with Embedded LO

P.S. All the Details Are Available in Joel's book

NEW, SECOND EDITION, AVAILABLE JULY 2020

SECOND EDITION

HANDBOOK OF

MICROWAVE COMPONENT MEASUREMENTS

WITH ADVANCED VNA TECHNIQUES

Add Confidentiality Statement Here