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Tron Future Tech Inc.

Our Mission:
• We help our customers collect, analyze and utilize 

valuable data through fundamental sensor and 

communication inventions. 

Area of Focus:
• Ultrathin all-digital/hybrid phased array based

radar/communication turnkey systems.

• Value-added data processing infrastructure.

Major Capabilities:
• IC design: III/V RFFE, CMOS RFSoC, ASIC

• Module design: Power, FPGA, GPU modules

• Hardware system design: SatCom, AESA Radar

• Software system design: cloud service

About Us:

>20% employee with Ph.D. degrees from 

Caltech/USC/MIT/UCLA/NTU/NCTU/NTHU etc.

Address:

7F-A, No.1, Sec. 3, Gongdao 5th Rd., 

Hsinchu City 30069, Taiwan, R.O.C.
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Our History and Experiences
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Agenda
• Technology Progress Overview. 

• Market Segmentation.

• Testing Challenges.
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Let’s Imagine Future AESA

(and ignoring technological feasibility for 30 seconds….)

Paper thin 
Flexible

Two fundamental problems need to be addressed:

1. To what extent can this ideal concept be fundamentally possible?
2. How feasible are the underlying technologies today?

1. Paper thin, and probably flexible.
2. Include all Radar/COM/EW functions and very easy to use.

Ref: Our 2019 IEEE Radar Talk: An X-band Scalable 4×4 Digital Phased Array Module using RF SoC and Antenna-in-

Package
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Underlining Technology Progress

• What breakthroughs have been made in technology?

1. Arithmetic and Logic Circuit → 80x size & performance improvement in last 12 years.

2. Analog-to-Digital Converter → 5x size & power improvement in 10 years.  

3. RF Power Amplifier → GaN PA generates 10x more power with >50% efficiency. 

4. Transceiver Modules → discrete to integrated TR module, >100 times size reduction.

5. Packaging and Assembling → 3D-IC-stacking ball grid array (BGA) with flip-
chip process.

Ref: Our EW Europe 2018 Talk:” Flexibility and Thinness – How Semiconductor Technologies 

Shape Future Radar and Electronic Warfare?”
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A Possible Future X-band Array Element

Antenna 

GaN Frontend
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• Antenna is fundamentally limited by (signal wavelength) times (fractional bandwidth) ~ 𝜆0 ⋅
Δ𝑓

𝑓𝐶
.

• Electronics will be limited by capacitors, inductors and filters (➔ switching speed & material properties).

• Element-level functions will be 3D heterogeneously integrated/packaged. Several challenges:

• Mechanical stress, and heat exchange.

• The package has to be mounted on a substrate (AlN or graphene on Si/SiC) with a thickness of 300-500 
𝜇𝑚 to provide mechanical strength.  
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Large Array System Scenario

• The thickness is mainly limited by how heat and DC power are transferred.

• For 10GHz system, 3-15 mm subarray thickness and 2-15 mm global mounting 

structure (secondary or higher hierarchy) can be achieved. 

• This make it possible to achieve ~3mm lower-power hundred-element array at X-band, 

<30mm thickness for THAAD-grade radar within a decade. 
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Demonstrator Debug Port
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• Element-level digital AESA with cm-thickness.
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The LTCC Multichip TR Modules and AiP

Bottom View 

Top View

Operational Frequency
Band: 9-10 GHz
Channel BW: 40 MHz

Transmitter
Digital Input
RF Output

Receiver
RF Input
Digital Output

CMOS RF SoC

Synchronized CLK Distribution

A Typical GaAs Frontend
PA Power: 27 dBm
LNA Gain: 16 dB 
LNA NF: 2.5 dB
Switch Time : 1ns

Temp.
Sensor

GaAs
Frontend

CMOS TRX

LTCC substrate Package Size

15.3mm x 15.3 mm x 3mm
2.6mm (assembled thickness)

Antenna
A

D
C

I

A
D

C

Q

D
A

C

I

D
A

C

Q

Patch
Antenna

GaAs 
Frontend

Temp.
Sensor

CMOS 
T/R IC

LTCC 
substrate

• The RF SoC can work with several GaAs and GaN frontends (LNA/PA).
• This is 2018 RD prototype, not a product.
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Early 4x8 Array Pattern Measurement
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Early 4x8 Sequential Scanning Pattern

• Measured peak EIRP ~ 48 dBm with 32 CMOS only TXs. Technical Details published in IEEE Radar 

Conference 2019.
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Wireless Scanning Technology Development
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Ref: EW Asia 2019:”Ultrathin All-Digital Software-defined Active Phased Array Technology”
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AESA Cost Issues

The cost of phased array is proportional to the total no. of array 

elements and PA power.  

[Ref] Herd J.S., Conway M.D. The Evolution to Modern Phased Array Architectures. Proceedings of the IEEE, 2016, Vol. 104, No. 3, pp. 519-529.
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3D AESA Cost Reduction
• Fully Populated Planar AESA. • Orthogonal Linear Digital AESA.

No. of Elements W*H H (TX), W (RX) 1024➔ 32 (3% cost)

Peak Power 𝑃0 ∗ 𝑊 ∗ 𝐻 ~𝑃0 ∗ (𝐻) 3% original power

Antenna Gain ∝ 𝑊 ∗ 𝐻 ∝ 𝑊 (RX), ∝ 𝐻 (TX) 3% gain for RX & TX

Max. Dwell Time 𝑇0 𝑇0* H 32 times with RX multibeam

SNR 𝑆𝑁𝑅0 𝑆𝑁𝑅0 ⋅ 𝐻/𝐻
3 1/1024 ➔ (18% detection range) 

Cost per Area 𝐶0 𝐶0 Similar cost per coverage area.
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An Urban Surveillance Scenario
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3D Detection with 16TX, 24RX

• “3D” position of an RCS target can be extracted. 
• Curvature of high-way can be precisely measured from a remote site.

• Ground surface estimation and target pattern recognition is used to identify drone from 
clutters(cars).

• Target height from estimated earth surface.
• Speed range and track properties
• RCS Size.

10 frames, 1 Hz update Rate, 
10 Sec. continuous. Each point 
represents a moving object.
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Digital AESA + massive computations

Traditional Beamforming
with 8 RXs

Compressive Sensing with 
only 8 RXs

• Ultra-fine spatial/velocity- resolution in the same aperture. 

Real Measurements with 8 RXs.

• In previous slides, digital AESA tries to mimic analog AESA.  Today’s CPU is 10,000 times better than CPU in 2000.
• Compressive sensing requires 105 times computations compared to beamforming for 1000 RTX.
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AESA Radar Future Trends
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• Long-range Hypersonic Threats
• Mid-range Slow Moving Threats
• Electronics Warfare: EA, ES, EP
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Agenda
• Technology Progress Overview. 

• Market Segmentation.

• Testing Challenges.
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This section will be updated 
during presentation.
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Summary
• Technology progress enables large-aperture phased array in ultra-thin 

formfactor, and enhancing many existing and new applications.

• Future phased array market will be segmented into three major sectors:
• Digital full array: computation intensive high performance market.

• Digital sparse array: computation intensive low cost market

• Hybrid array: power efficient satellite market. 

• Ultrathin array testing will not only rely on Keysight’s high-performance 
equipment’s (e.g. PNA-X), array products will have extensive built-in-self-
test, system-level adaptive algorithm, software-intensive system-level 
environment testing simulation framework, and innovative production 
testing mechanics to drive normalized array cost by a factor of four in the 
next decade.


