

Testing Next-Gen Type-C Technologies of USB4, Thunderbolt 4, and DP 2.0

Jacky Yu

Project Manager / Keysight Technologies

Agenda

Preparing to test and avoid pitfalls in your USB4 implementations

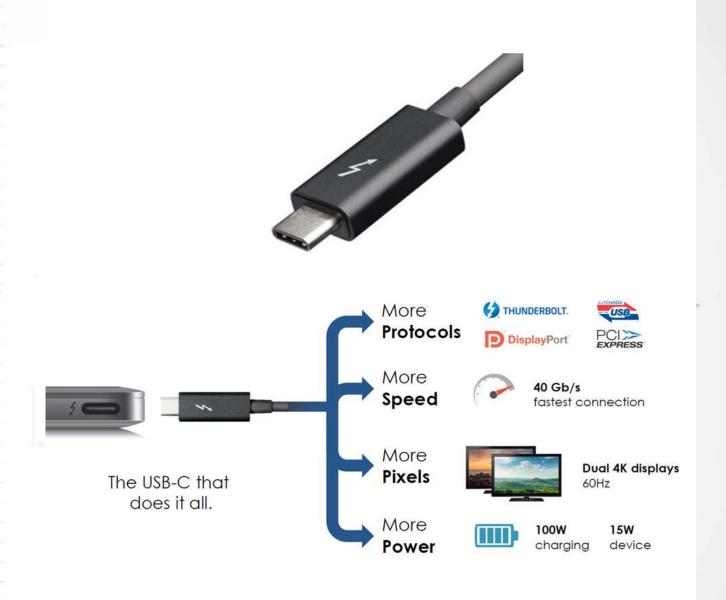
- USB4/DPoC Overview
- USB4/DPoC Compliance Testing Overview
- USB4/DP Electrical Testing
- Q & A

Note:

- USB4[™], USB Type-C[™] and USB-C[™] are trademarks of USB Implementers Forum
- Thunderbolt™ is a trademark of Intel Corporation
- VESA® is a registered trademark and DisplayPort™ is a trademark of VESA
- USB4 diagrams courtesy of the USB-IF

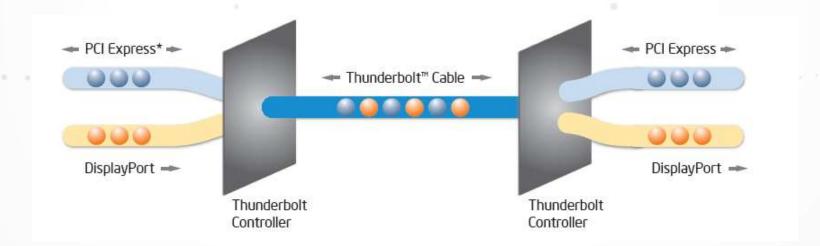
USB4/DPoC Overview

USB4 Overview


- Announced by USB-IF in March 2019
- Spec released September 2019
- Based on the Thunderbolt 3 protocol
- Open standard and potentially integrated in CPU
- Uses the Type-C connector
- Tunnels USB, DP, and PCIe
- Channel aggregation: two independent 20Gbps bonded into one logical 40Gbps link
- Supports other standards through ALT mode
- Keysight solution help test with early adopter Protocol Decode, TX, RX, and Return Loss

Universal Serial Bus 4 (USB4™) Specification

Thunderbolt 3 Overview


- Announced in Q2 2015
- Uses the Type-C connector
- Channel aggregation: two independent 20Gbps links into one logical 40Gbps link
- Supports other standards through ALT mode
- Cost competitive vs multi-chip, discrete, mux solutions

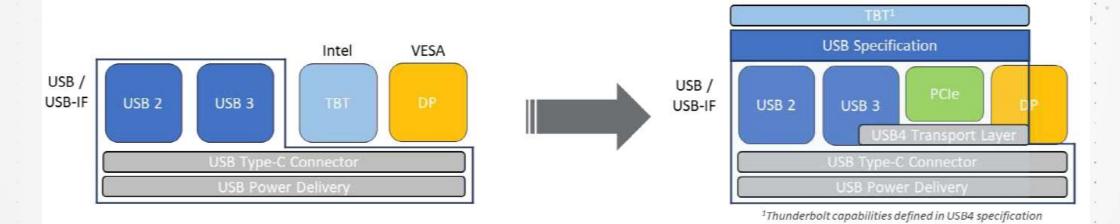
Thunderbolt and CIO (Converged IO)

- Thunderbolt features two bidirectional (full duplex) channels that run up to 20Gbps each and allows daisy-chaining of up to six devices.
- Passive or active Cable
- Thunderbolt tunnels two protocols (PCI Express and DisplayPort) when running in native Thunderbolt mode.

TBT4 Overview

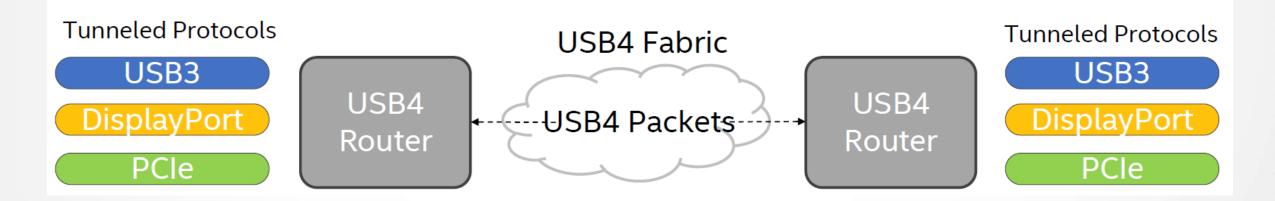
- To better align with USB4, Intel launch TBT4 in latest platform but provide same physical layer as TBT3.
- USB4 specification defines how to build TBT3 compatible products.
- Thunderbolt certification, brand names and logos are managed and owned by Intel without change.

USB Revision Overview


Revision	Brand Name	Throughput	Package Logo
USB1.1	Low Speed Full Speed	1.5Mbps 12Mbps	USB
USB2.0	High Speed	480Mbps	CERTIFIED USB
USB3.0 USB3.2 Gen 1x	SuperSpeed USB 5Gbps	5Gbps	SUPERSPEED USB
USB3.1 USB3.2 Gen 2x	SuperSpeed USB 1 10Gbps	10Gbps	SUPERSPEED+
USB3.2 USB3.2 Gen 2x2	SuperSpeed USB 20Gbps	20Gbps	SUPERSPEED+
USB4 USB4 Gen 2x2	USB4 20Gbps	20Gbps	USB ₂₀ TM Gbps
USB4 USB4 Gen 3x2	USB4 40Gbps	40Gbps	USB 40 TM Gbps

Copyright © 2019, USB3.0 Promoter Group. All rights reserved.

Delivering the USB Type-C Vision


- USB4[™] Specification Goals:
 - Help converge USB Type-C connector ecosystem to minimize end-user confusion
 - Drive broad adoption of USB4 architecture
- What the Specification Enables:
 - Standards-based ownership for specifications and certification
 - Third party vendors can build Thunderbolt™ 3 compatible SOC or peripheral silicon

USB4TM Architecture Overview

- Runs over USB Type-C[®] interconnect
- Tunnels USB3, PCIe and DP protocols
- Signaling rates of 10 or 20 Gbps (10 to 40Gbps aggregated b/w)
- Utilizes passive and active cables (longer reach)
- Topologies with up to 6 routers
- Time sync accuracy support across USB4™ Fabric

What is DisplayPort?

- Digital display interface from GPU to display
 - · Addresses embedded models as well
- Administered by VESA¹
- Up to 4 differential lanes
- Daisy chain up to 32 monitors
- Connectors
 - Standard DP
 - Mini DP
 - USB Type-C[®]

DPoC(Alt mode)

¹Video Electronics Standards Association

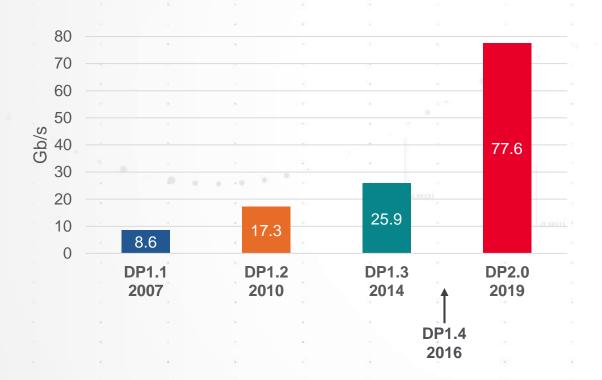
DisplayPort Interface

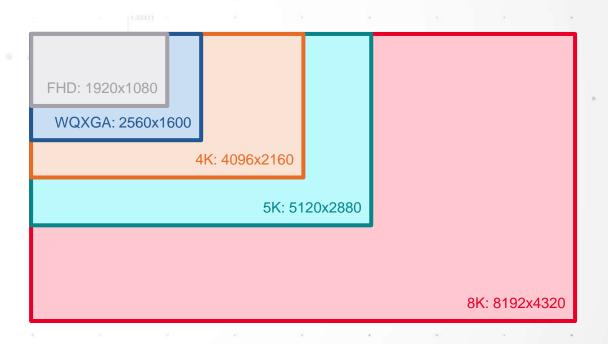
Main Link


- Display data transfer
- 4 unidirectional high-speed lanes
- Multiple bitrates supported

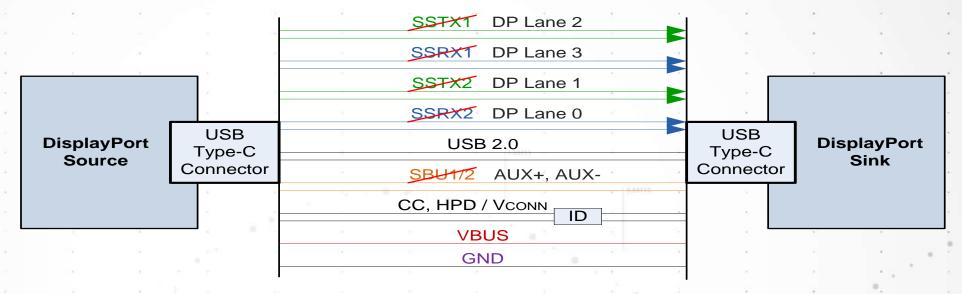
AUX Channel

- Link management
- Test mode control
- 1 bidirectional low-speed lane


Hot Plug Detect


- Source detects presence of sink
- Sink notifies of status changes via IRQ

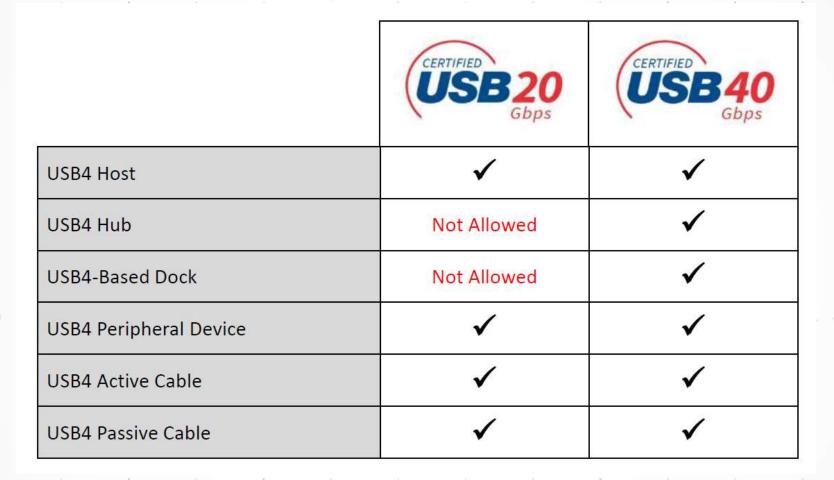
DP Maximum Data Transfer Rate and Resolution¹


¹Color depth = 24 bpp, refresh rate = 60 Hz

13

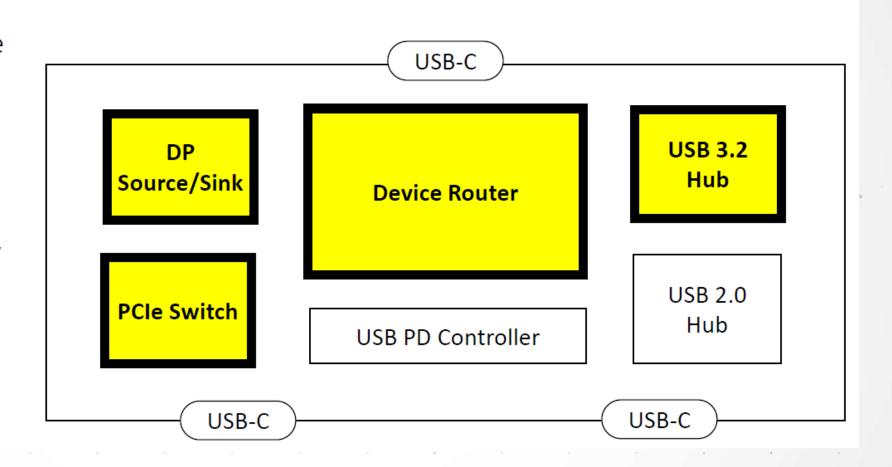
4xDP Over a USB Type-C to USB Type-C Full Feature Passive

Cable



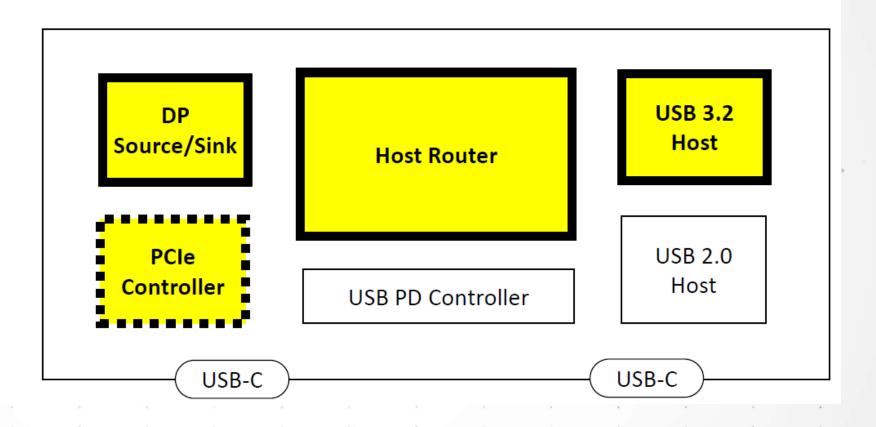
- Utilizes optional DP Alt Mode capability of USB Type-C connector
- DisplayPort can use all four high speed lanes to deliver full DisplayPort performance
- The DisplayPort AUX Channel uses the SBU pins
- The DisplayPort HPD / IRQ is transmitted over the CC pin using the USB-PC protocol
- USB 2.0 and USB Power Delivery always available

USB4™ Certification Categories

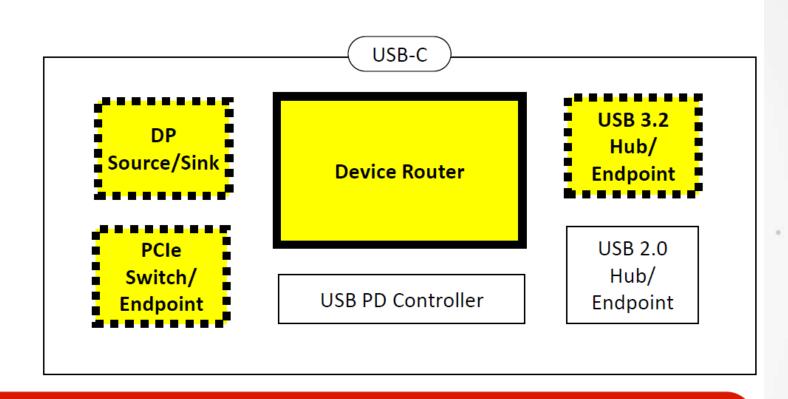


Copyright © 2019, USB3.0 Promoter Group. All rights reserved.

USB4™ Required Testing – Hubs/Docks


- USB PD Compliance
- USB Type-C® Compliance
- USB 2.0 Compliance
- USB 3.2 Compliance
- USB4™ Compliance
 - Tunneling
 - TBT3-Compatibility

USB4™ Required Testing – Hosts


- USB PD Compliance
- USB Type-C® Compliance
- USB 2.0 Compliance
- USB 3.2 Compliance
- USB4™ Compliance
 - DP and USB3 Tunneling
 - If supported:
 - PCIe Tunneling
 - TBT3-Compatibility

USB4™ Required Testing – Peripheral Devices

- USB PD Compliance
- USB Type-C® Compliance
- USB 2.0 Compliance
- USB 3.2 Compliance
 - If supported
- USB4™ Compliance
 - If supported:
 - DP Tunneling
 - USB3 Tunneling
 - PCIe Tunneling
 - TBT3-Compatibility

If support DP or PCle tunneling, must support equivalent USB function (if available)

DP Compliance Program

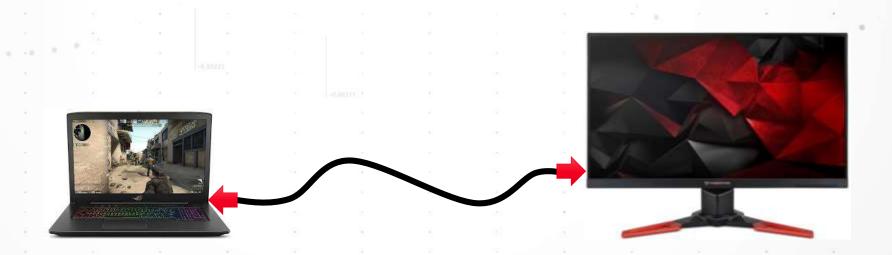
- Managed by VESA
 - Jim Choate (former Agilent USB Pyramid Lead)
- Why do companies need the logo?
 - Ensure interoperability
 - Consumers can easily identify compliant products
- How to get it?
 - Pass the Compliance Program
 - Be a member of VESA
 - Sign the VESA DisplayPort Trademark License Agreement
- Authorized Test Centers (ATCs)
 - · Allion, GRL, TTA, UL

DP Compliance Test Specification

- DP1.4a PHY CTS rev1.0 released in July 2018
 - Ongoing activities to release new revision (2.0 coming soon)
- Several DUT types
 - Source (un)tethered
 - Sink (un)tethered
 - Passive cables
 - Others...

Item	Name	Normative/ Informative
3.1	Eye Diagram Test	Normative
3.2	HBR/RBR Non-PE Level Verification Test	Normative
3.3	HBR/RBR PE Level Verification and Maximum Differential Peak-to-Peak Voltage Test	Normative
3.4	HBR3/HBR2 PE Level and Equalization Verification Test	Normative
3.5	HBR3/HBR2 V _{TX_DIFFp-p_MAX} Test	Normative
3.6	Inter-pair Skew Test	Informative
3.7	Intra-pair Skew Test	Informative
3.8	AC Common Mode Noise Test	Informative
3.9	Non-ISI Jitter Measurement Test	Normative
3.10	HBR3 TX Differential RL Test	Informative
3.11	TJ/RJ/DJ Measurement Tests	Normative
3.12	Main-Link Frequency Compliance Test	Normative
3.13	Spread-spectrum Modulation Frequency Test	Normative
3.14	Spread-spectrum Modulation Deviation Test	
3.15	dF/dT Spread-spectrum Deviation High-frequency Variation Test	Informative
Item	Name	Normative/

Item	Name	Normative/ Informative
4.1	JTOL Test	Normative



DP Alt Mode Compliance Test Specification

The DP Alt Mode on USB Type C CTS Version 1.0, was released Jan 24, 2017.

Over 200 DP Alt Mode products have been certified over last two years

Products include Sources, Sinks, Adapters and Docks

DP Alt mode Certification Test Coverage

Test plan and CTS covers all features and supported pin assignments.

- USB PD Compliance Testing
 - Demonstration of proper functionality/behavior for DP Alt Modes
 - A device must pass DP Alt Mode USB-PD certification tests to receive DP certification
- TX and RX Electrical testing of all supported modes with PHY test fixtures
 - USB PHY electricals
 - a. USB 3.2 5G
 - b. USB 3.2 10G (if supported)
 - c. USB 2.0 480Mb/s
- DP PHY electricals (DP 1.4a PHY CTS)
 - RBR, HBR, HBR2, HBR3
 - Aux Channel

USB4 Electrical Testing Methodology

- PHY testing approach will be similar to Thunderbolt 3
 - Tx, Rx, and Return Loss
 - Active and Passive Cable Test

Plus

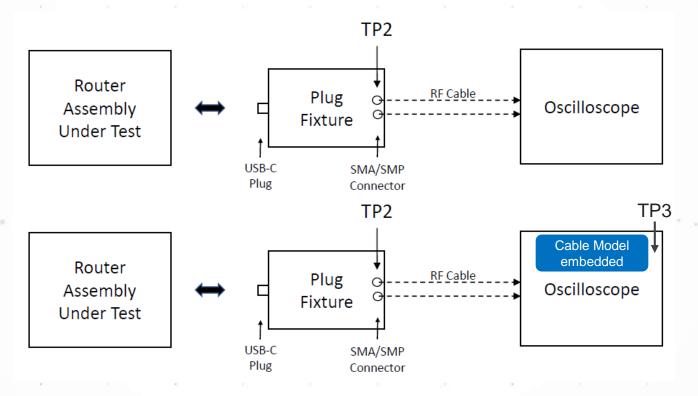
- Type-C Power Delivery
- DP, USB over Type-C

Universal Serial Bus 4 (USB Type-C) Electrical Compliance Test Specification Universal Serial Bus 4 (USB Type-C)
Router Assembly
Electrical Compliance Test Specification

Date:

Jan 30, 2020

Revision:


0.9

25

Transmitter Measurement Point/Setup

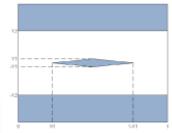
- TP2 measurements are done using plug-fixture
- TP3 measurements are done using plug-fixture with cable model embedded in the oscilloscope

Copyright © 2019, USB Implementers Forum.

Transmitter Specifications

- Traditional voltage, eye, SSC, 10ps min rise/fall time
- Traditional UI, TJ, DDJ jitter decomposition
- Challenge: New Uncorrelated jitter measurements

Table 3-3. Transmitter Specifications Applied for All Speeds (at TP2)


Symbol	Description.	Min	Man	Units	Conditions
RL_DIFF	Differential Return Loss, 0.05-12GHz		See Section 3.4.1.2	dB	
RL_COMM	Common Mode Return Loss, 0.05 - 126Hz		See Section 3.4.1.3	411	
TX_EQ	Transmitter Equalization Setting	it.	See Section 3.4.1.4		
SSC_DOWN_SPREAD_RANGE	Dynamic range of SSC down-spreading during steady-state	0.4	0.5	56	See Note 3. Note 4, and Figure 3-3.
SSC_DOWN_SPREAD_RATE	SSC down-spreading modulation rate during steady-state	30	33	XHz	See Note 4 and Figure 3-9.
ISC_PHASE_DEVIATION	Phase jitter amonisted with the SSC modulation during steady state	2.5	38.	28 20	See Note 1. Note 4, and Figure 2-9.
ISC_SLEW_RATE	SSC frequency slew rate (df/dt) during steady.	-	1250	ppm/ps	See Sote 2. Note 4, and Figure 1-8.
TE_FREQ_VARIATIONS_TRAINING	TX frequency variation during Link training, before obtaining steady- state	T	See Sertion 3.4.1.1	ppm	See Note 4.
LANE_TO_LANE_SKEW	Skew between dual transmit zignals of the same USB4 Port	Ť.	26		See Water S.
RISE_FALL_TIME	TX rise/fall time measured between 20- 80% levels	10	-	34	Test pattern shall be SQ228 (see Table 6-56).
v_elec_inle	Feak voitage during transmit electrical idle (one-sided voltage opening of the differential signal)		30	miV	See Note 6.
V_TX_DC_AC_CONN	Instantaneous DC-AC voltages at the connector side of the AC coupling capacitors	-0.5 (min1) -0.3 (min2)	1,0	v)	See Nate 7.

TJ DDJ DCD(OE)

Table 3-6. Gen 2 Transmitter Specifications at TP2

Symbol	Description	Min	Max	Units	Comments
UI	Minimum Unit Interval	99.97	100.03	ps	The minimum UI value corresponds to the Link baseline speed of 10.0 Gbps with an uncertainty range of -300 ppm to 300 ppm. See Note 4.
AC_CM	TX AC Common Mode voltage		100	mV pp	
TJ	Total Jitter		0.38	UI pp	See Note 2 and Note 3.
UJ	Sum of uncorrelated DJ and RJ components (all jitter components except for DDJ)		0.31	UI pp	See Note 2.
DDJ	Data-Dependent Jitter		0.15	UI pp	See Note 5.
UDJ	Deterministic jitter that is uncorrelated to the transmitted data		0.17	UI pp	
UDJ_LF	Low Frequency Uncorrelated Deterministic Jitter		0.04	UI pp	See Note 6.
DCD	Even-odd jitter associated with Duty-Cycle-Distortion		0.03	UI pp	
Y1	TX eye inner height (one-sided voltage opening of the differential signal)	140		mV	Measured for 1E6 UI. See Note 1, Note 2, and Figure 3-15.
Y2	TX eye outer height (one-sided voltage opening of the differential signal)		650	mV	Measured for 1E6 UI. See Note 1, Note 2, and Figure 3-15.

pre 3-15. TX Mask Netations

Return Loss

- TX and RX return loss
- Differential and Common Mode Return Loss
- Challenge: Jumping straight into TX and RX testing

Figure 3-10. TX Differential Return Loss Mask

E5080B New ENA Network Analyzer

Figure 3-11. TX Common-Mode Return Loss Mask

KEYSIGHT

28

Transmitter Equalization

- Going from 1 pre-shoot and 1 de-emphasis to 16 presets, including a low-voltage variant
- Must test each preset, and also find optimal preset
- Challenge: Over-look optimization, or set incorrectly in TX silicon.

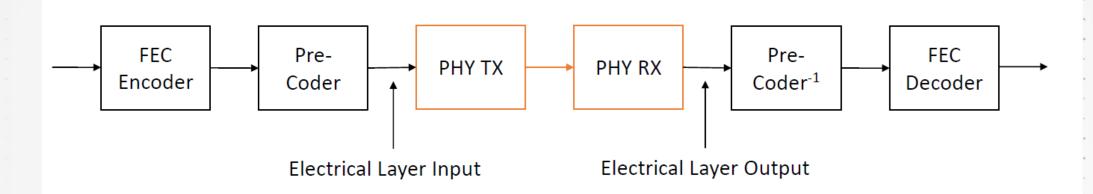
Table 3-5. Transmit Equalization Presets

Preset Number	Pre-shoot [dB]	De-emphasis [dB]	Informative Filter Coefficients			
Freset Number			C-1	C ₀	C ₁	
0	0	0	0	1	0	
1	0	-1.9	0	0.90	-0.10	
2	0	-3.6	0	0.83	-0.17	
3	0	-5.0	0	0.78	-0.22	
4	0	-8.4	0	0.69	-0.31	
5	0.9	0	-0.05	0.95	0	
6	1.1	-1.9	-0.05	0.86	-0.09	
7	1.4	-3.8	-0.05	0.79	-0.16	
8	1.7	-5.8	-0.05	0.73	-0.22	
9	2.1	-8.0	-0.05	0.68	-0.27	
10	1.7	0	-0.09	0.91	0	
11	2.2	-2.2	-0.09	0.82	-0.09	
12	2.5	-3.6	-0.09	0.77	-0.14	
13	3.4	-6.7	-0.09	0.69	-0.22	
14	3.8	-3.8	-0.13	0.74	-0.13	
15	1.7	-1.7	-0.05	0.55	-0.05	

Transmitter Specifications at TP3

- Use case for 0.8m or 2m cable
- Challenge: Can be most difficult test case, coupled with no channel test case.

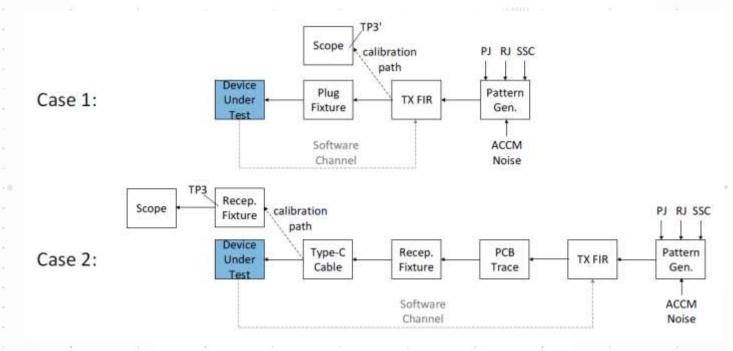
Table 3-9. Gen 3 Transmitter Specifications at TP3


Symbol	Description	Min	Max	Units	Comments
TJ	Total Jitter		0.60	UI pp	See Note 2, Note 3.
UJ	Sum of uncorrelated DJ and RJ components (all jitter components except for DDJ)		0.31	UI pp	Note 2.
UDJ	Deterministic jitter that is uncorrelated to the transmitted data		0.17	UI pp	
X1	TX eye horizontal deviation		0.23	UI	Measured for 1E6 UI. See Note 2, Note 4, and Figure 3-15.
Y1	TX eye inner height (one-sided voltage opening of the differential signal)	49		mV	Measured for 1E6 UI. See Note 1, Note 2, and Figure 3-15.
Y2	TX eye outer height (one-sided voltage opening of the differential signal)		650	mV	Measured for 1E6 UI. See Note 1, Note 2, and Figure 3-15.

Notes:

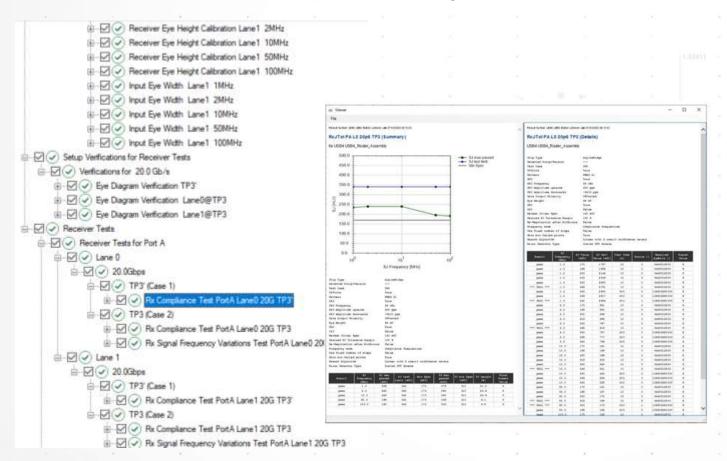
- 1. TX voltage is differential.
- Measured while applying the reference CDR described in Section 3.3.3 and the reference equalizer
 defined in Section 3.3.4. Note that the measured jitter includes residual SSC jitter passing the reference
 CDR
- TJ is defined as the sum of all "deterministic" components plus 14.7 times the RJ RMS (the transmitter RJ RMS multiplier corresponds to the target BER with some margin on top).
- X1 specification is informative but shall be assumed as a valid reference if direct TJ measurement cannot be reliably performed.

USB4TM RX Testing Methodology



- The Electrical performance is tested in stand-alone mode without applying Pre-Coding nor Forward-Error-Correction
 - The testing is based on PRBS patterns driven by pattern-generator
- The coded BER performance cannot be measured directly due to the large measurement window needed (several years...) and therefore validated indirectly based on electrical layer indicators

Receiver Uncoded BER


- The receiver shall operate at uncoded BER of 1E-12 with stressed signal applied
- Two test setups are used for evaluating the receiver tolerance:
 - "Case1" addressing installations with low insertion-loss
 - "Case2" addressing installations with maximum insertion-loss

USB4 Electrical Receiver Test Proposal

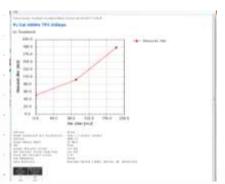
- Support Both M8020A and M8040A BERT
- N5991U40A USB4 Receiver Compliance Test Software

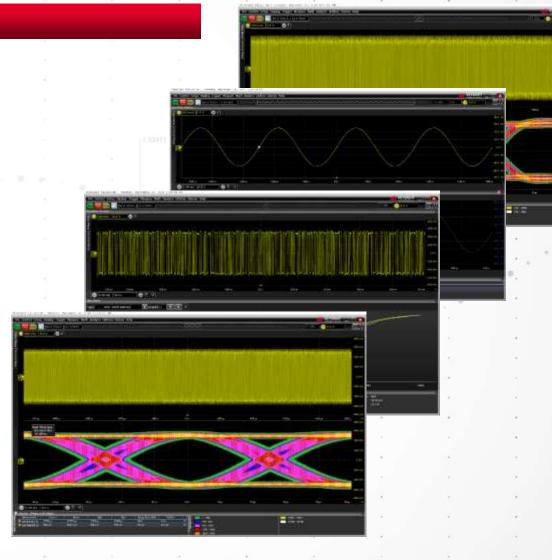
M8020A J-BERT + M8062A 32Gbps MUX

M8040A 32/64 Gbaud J-BERT

USB4 Test Setup (M8020A): Calibration for Case 1 and Case 2

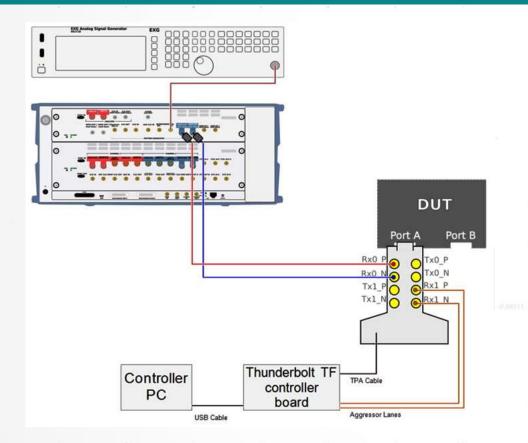
Case 1 (Near End) Case 2 (Far End)

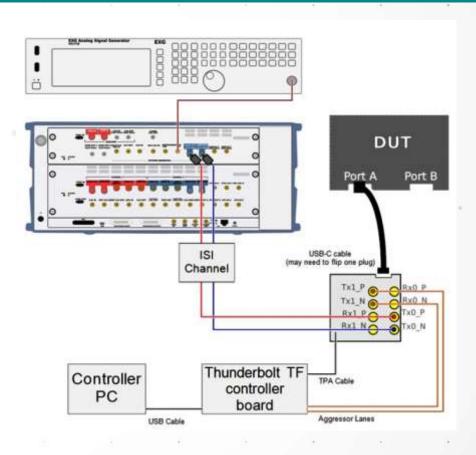



USB4 Receiver Test Calibration for 10Gb/s, 10.3125Gb/s, 20Gb/s and 20.625 Gb/s

THUNDERBOLT CTS V1.5 SECTION 4.2

- 1. Select TX Equalization Preset for TP2 (Case 1)
- 2. Calibrate AC Common Mode for TP2 (Case 1)
- 3. Calibrate Random Jitter for TP2 (Case 1)
- Calibrate Total Jitter at TP2 (Case 1) for all PJ frequencies: 1 MHz, 2 MHz, 10 MHz, 50 MHz and 100 MHz
- Calibrate Eye Diagram at TP2 (Case 1) for all PJ frequencies: 1 MHz, 2 MHz, 10 MHz, 50 MHz and 100 MHz
- 6. Calibrate Total Jitter at TP3EQ (Case 2) for all PJ frequencies: 1 MHz, 2 MHz, 10 MHz, 50 MHz and 100 MHz
- Calibrate Eye Diagram at TP3EQ (Case 2) for all PJ frequencies: 1 MHz, 2 MHz, 10 MHz, 50 MHz and 100 MHz





USB4 Test Setup (M8020A): Case 1 and Case 2 Execution

Case 1 (Near End)

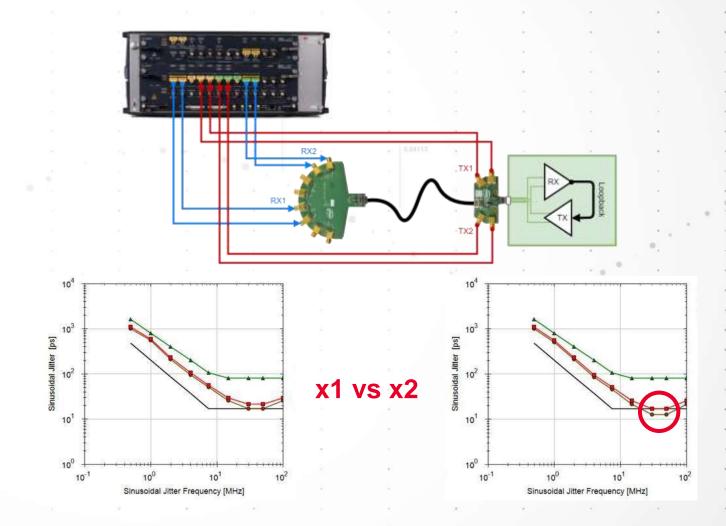
Case 2 (Far End)

USB4 Receiver Test Execution

THUNDERBOLT CTS V1.5 SECTION 4.3

- Connect the DUT for Receiver testing.
- Recall Test Case 1 calibrated setup that was saved previously.
- 3. Negotiate Equalization Preset with the DUT
- 4. Run BER Test for 400s (Gen2) or 200s (Gen3)
- 5. If Error count >0, repeat step 4 but for 700s (Gen2) or 350s (Gen3)
- 6. If Error Count >2, FAIL the test, otherwise PASS
- 7. Repeat steps 2 to 6 for Test Case 2
- 8. Repeat steps 2 to 7 for all ports, speeds and PJ settings

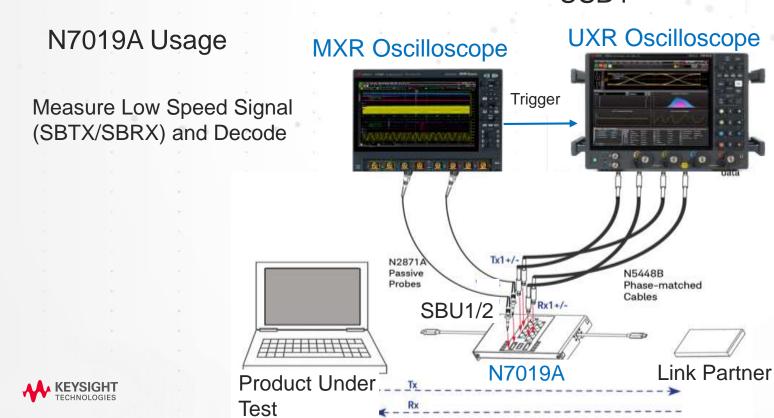
Keysight provides simple, repeatable automated and unattended calibration and test execution using automation SW for Tx and Rx Test



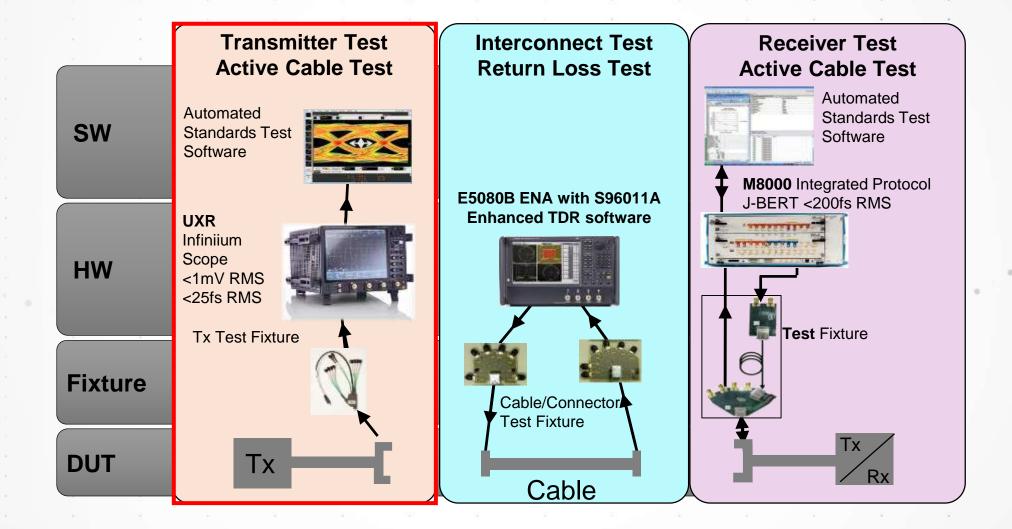
37

USB3.2 x 2 Receiver Testing (BKM)

- Two Pattern Generators / Error Detectors
- Two independent RX paths fully calibrated
- Link Training in x2 mode
- Concurrent JTOL on both RX lanes
- USB-like traffic during test
- Test setup like operating conditions


38

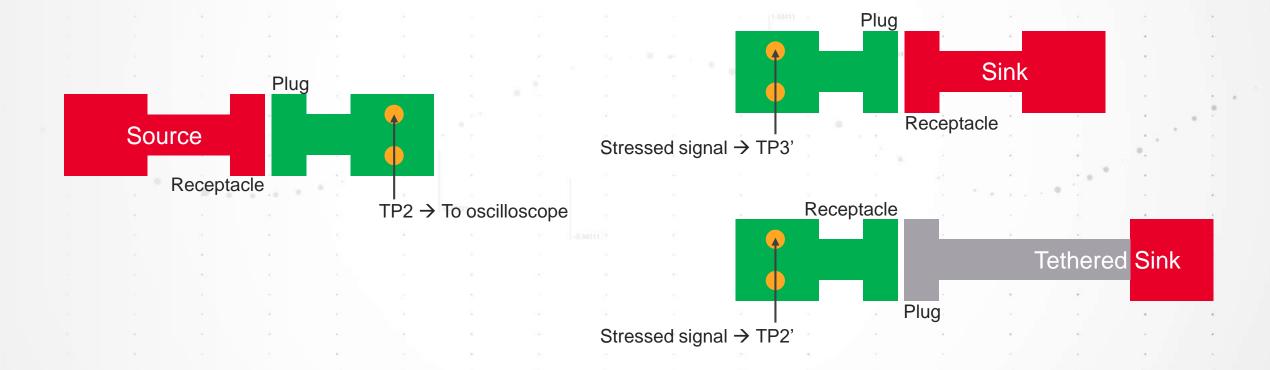
N7019A USB Type-C Active Link Test Fixture


Provides access to all Type-C signals during an active link Signals include Vbus, USB 2.0, USB-PD, SBU1/2, and TX/RX up to maximum USB4 rate of 20 Gbps

Works in conjunction with Keysight Protocol Trigger Decode solutions for USB-PD, USB 2.0, USB 3.2, and USB4

Measure High Speed Signal (TX1/RX1,TX2/RX2) and Decode

Keysight USB4 Test Solution


DP Compliance Program

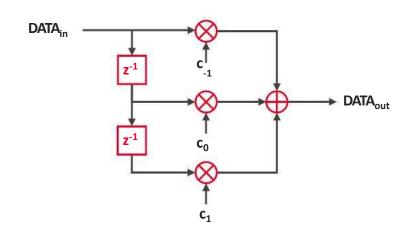
- Managed by VESA
 - Jim Choate (former Agilent USB Pyramid Lead)
- Why do companies need the logo?
 - Ensure interoperability
 - Consumers can easily identify compliant products
- How to get it?
 - Pass the Compliance Program
 - Be a member of VESA
 - Sign the VESA DisplayPort Trademark License Agreement
- Authorized Test Centers (ATCs)
 - · Allion, GRL, TTA, UL

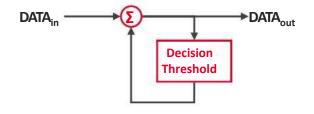
DP Test Point Access

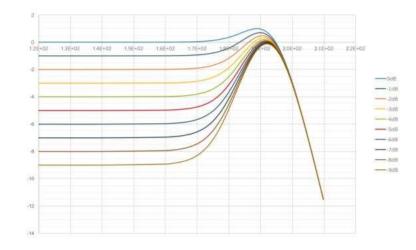
DP2.0 Equalization

DPTX: 3-tap FFE (16 presets)

• DPRX: CTLE (10 DC gain levels) + DFE

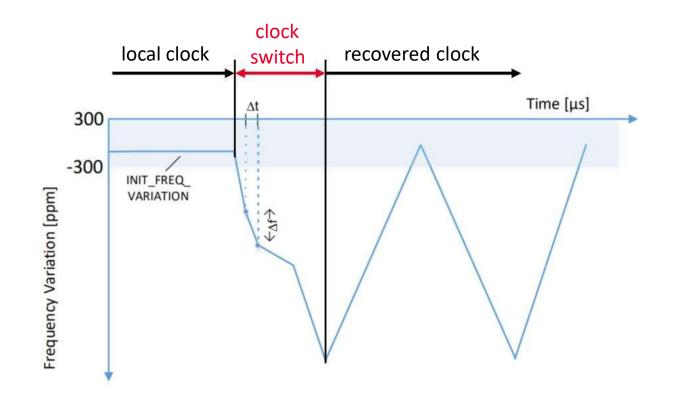

• Full characterization \rightarrow 16 x 10 = **160 combinations**


Preset Number	Pre-shoot [dB]	De-emphasis [dB]	Informative Filter Coefficients		
			C-1	Co	C ₁
0	.0	0	0	1	0
1	0	-1.9	0	0.90	-0.10
2	0	-3.6	0	0.83	-0.17
3	0	-5.0	0	0.78	-0.22
4	.0	-8.4	0	0.69	-0.33
5	0.9	0	-0.05	0.95	0
6	1.1	-1.9	-0.05	0.86	-0.09
7	1.4	-3.8	-0.05	0.79	-0.16
8	1.7	-5.8	-0.05	0.73	-0.22
9	2.1	-8.0	-0.05	0.68	-0.27
10	1.7	0	-0.09	0.91	0
11	2,2	-2.2	-0.09	0.82	-0.09
12	2.5	-3.6	-0.09	0.77	-0.14
13	3:4	-6.7	-0.09	0.69	-0.22
14	3.8	-3.8	-0.13	0.74	-0.13
15	1.7	-1.7	-0.05	0.55	-0.05


 The coefficients are normalized such that |C-1| + C₀ + |C₁| corresponds to full output swing. Preset configuration 15 represents operation mode with lower transmitter swing.

 $De - emphasis = 20 \cdot \log 10 \left(\frac{c_{-1} + c_0 + c_1}{c_{-1} + c_0 - c_1} \right)$

2. Preshoot and de-emphasis are calculated as following: $Preshoot = 20 \cdot \log 10 \left(\frac{-c_{r-1} + c_{r} + c_{r}}{c_{r-1} + c_{r} + c_{r}} \right) \qquad De - e\pi$



14

LTTPRs

- LTTPRs are needed as total channel loss increases with PHY rate
 - Longer channel
 - Extra latency
 - Longer and more complex link training
- Clock switch
 - During link training
 - 8b/10b in transparent mode
 - 128b/132b SCR in progress
- Test methodology in development

How to test DP PHY layer?

Source

- Configure the source to output test patterns with certain drive settings → AUX controller
- Embed worst-case channels, apply equalization on the oscilloscope
- Run measurements

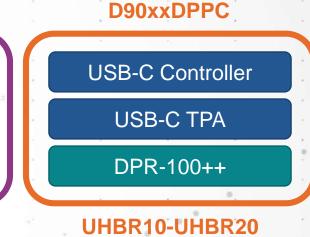
Sink

- Generate the stress signal with a pattern generator
- Guide the sink through Link Training → AUX controller
- Read built-in error counter

DP Source Compliance Test

SOFTWARE PACKAGES

Wilder


Keysight

Unigraf

- Updated software package D9040DPPC
- New software package D90xxDPPC
- Productivity improvements
 - ANPL
 - Disaggregation

RBR-HBR3

DP Sink Compliance Test

SOFTWARE

Wilder

Keysight

Unigraf

- New software package N5991xxxA
- Automated sink calibration and tests
- All PHY rates from RBR to UHBR20
- Standard DP connector and USB Type-C

N5991xxxA

N7018A

USB-C Controller

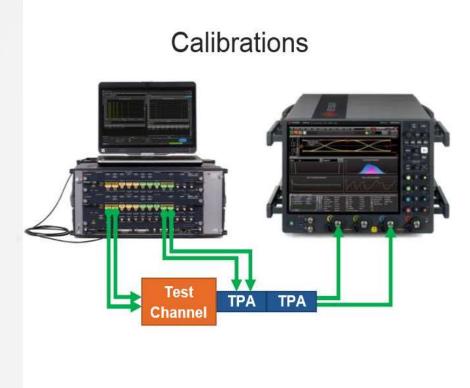
DP TPA

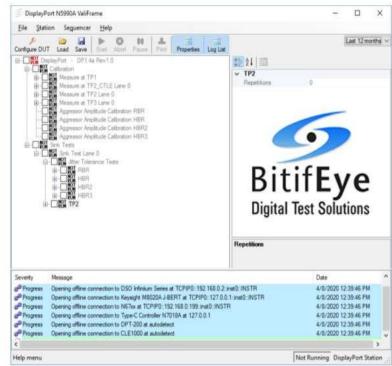
N7015A

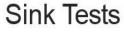
USB-C TPA

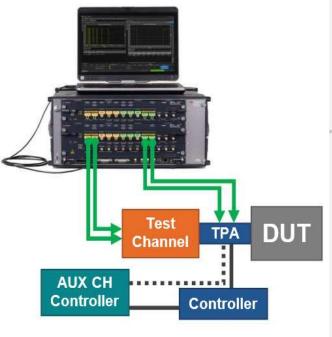
DPT-200

DPR-100++


RBR-UHBR20







DP Sink Compliance Test

Q & A

