

Data Center Technologies move toward 1\$ per Gigabit

Joe Lin

Project Manager / Keysight Technologies

- Datacom trends fueling innovation
- Optical Interconnects in 2020
- Technologies for lowering Data Center (DC) footprint
- Call to action

Datacom trends fueling innovation

Datacom trends fueling innovation

BANDWIDTH, POWER, PRICE

INTERNET TRAFFIC CAGR

x3 in five years (2016-2021)

WORKLOAD RUN OUTSIDE THE ENTERPRISE

Computing moving in the cloud or at the edge

99% TRAFFIC FROM DATA CENTER

99%

Originated or terminated in Data Center

Sources: Statista, Cisco Global Source Index

Hyperscale Data Center

AWS CLOUD

49 Availability Zones within 18 geographic Regions

Plans for 12 more Availability Zones and 4 more Regions

laaS/PaaS

MICROSOFT AZURE

Available in 36 regions Plans for 6 additional regions.

laaS/PaaS/SaaS

IBM CLOUD

60 Data Centers in 19 countries IaaS/PaaS

FACEBOOK

7 Mega Centers

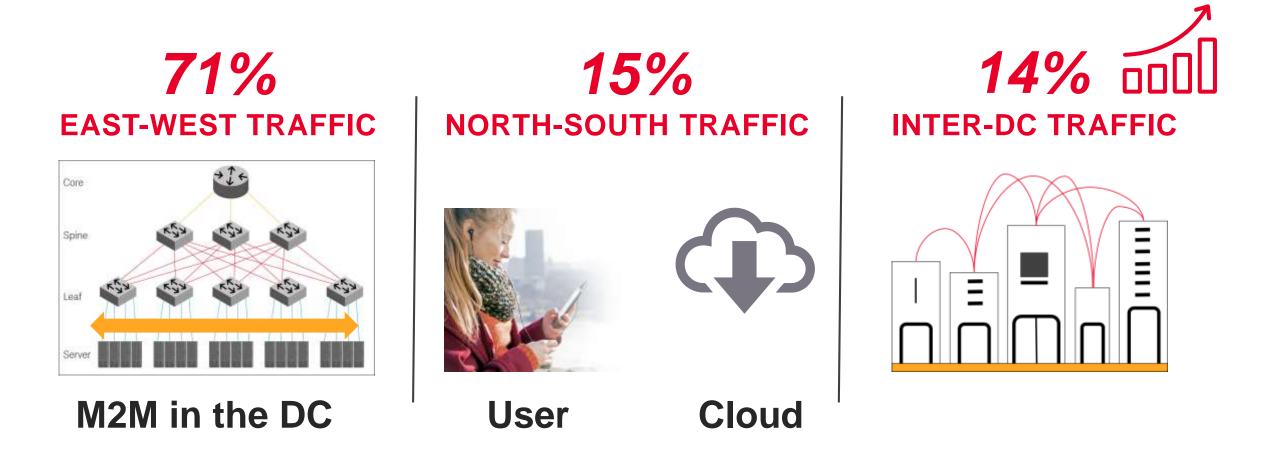
Plans to expand 3 of the existing and add 4 new Mega Data centers

SaaS

GOOGLE CLOUD 13 regions and 49 zones

Plans for 5 additional regions and 14 zones

laaS/PaaS/SaaS


ALIBABA

7 regions and 33 zones Plans for 4 additional regions IaaS/PaaS

A look into Mega Data Centers

TRAFFIC DOMINATED BY MACHINE TO MACHINE COMMUNICATION

Source: Cisco Global Source Index

Data Center challenges

POWER, SPENDING, DELAY

POWER CONSUMPTION FOR COOLING

>1% of WW el. Power consumption

DATA CENTER SPENDING ON SW & HW

Steadily increasing. Hyperscale Data Centers account for a third of the market

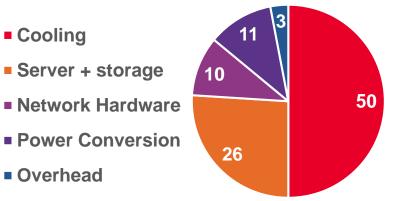
DROP IN SALES FOR 0.1S LATENCY

6%

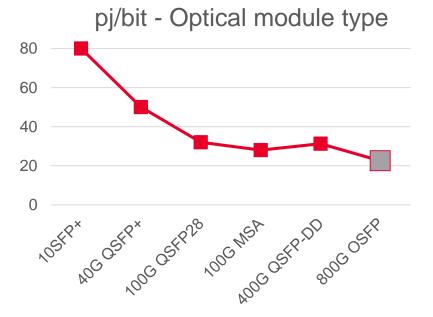
Similar results from amazon & google

Source: Statista, Northwestern University, Synergy research group, Yole development, <u>Akamai study</u>

Data Center challenges


TOWARD 1PJ/BIT

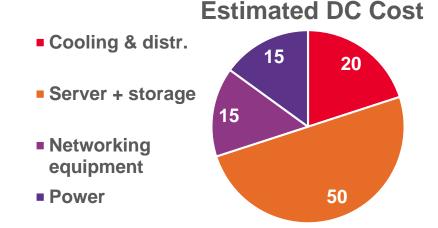
- Reduced footprint
 - Optimized cooling techniques, Server virtualization (VMs), etc.
 - Deploying efficient computing & networking technologies
 - The cascade effect
 - 1W reduction at the component level results in 2W+ reduction at the Data Center level

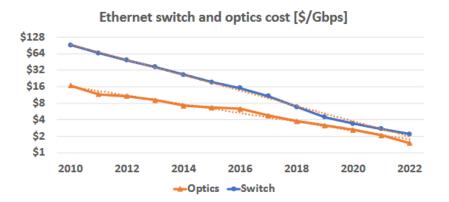

50Tb switch @ 20pj/bit = 2000Watt for populated chassis (1000Watt for optics)

NEED TO GO BELOW 5PJ/BIT

Source: Yole dev

Data Center challenges


TOWARD 1\$/GB/S OPTICAL I/O


- Reduced spending
 - Secure multi-source supply chain by
 - Enforcing interoperability
 - Fostering white box ecosystem (OCP)
 - Just good-enough design with MSAs
 - Leverage mass volume technologies
 - CMOS for consumer electronics (Silicon Photonics)
 - **VSCEL** for SR interconnects

Impact of optics in networking cost is growing (10% @10G, 30% @100G, 50%@400G)

1\$/GIGABIT FOR 400G OPTICAL TRX

Source: LightCounting, Dell'oro, Rockley Photonics

Optical Interconnects in 2020

Optical Interconnects in 2020

UNLEASHING 400G

25.6TB SWITCH

12.8Tb currently deployed at hyperscale

400G OPTICS IN THE STARTING BLOCKS

Mass deployment delayed

- 50% cost reduction compared to 100G
- 15W/module is still an issue
- (100G=3W)

Keysight World 2020 Taipei

100G SERIAL IN THE STARTING BLOCK

100G

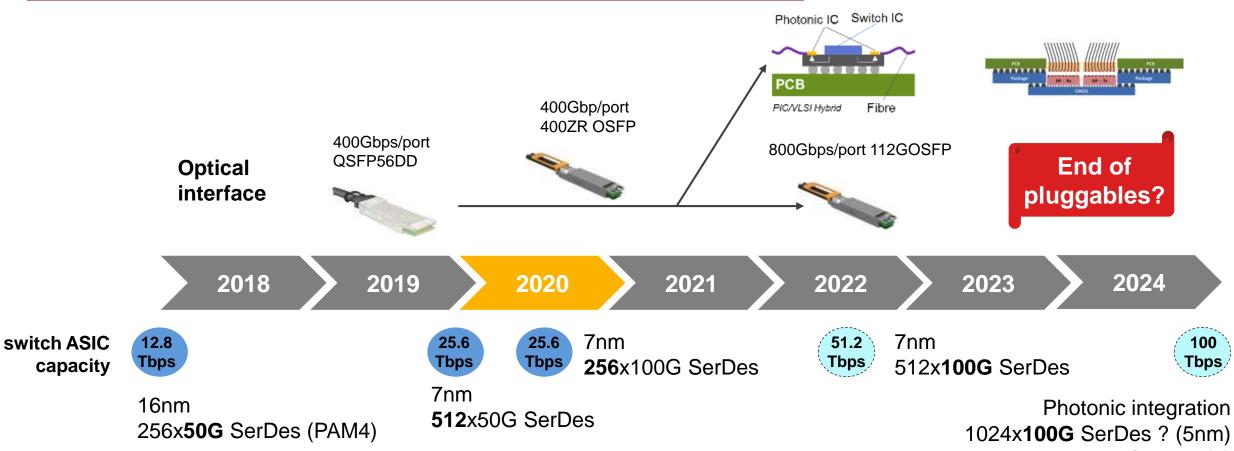
IEEE 80.23ck close to release

25.6Tb 100G SerDes-based switch ASIC by Innovium

400G deployment

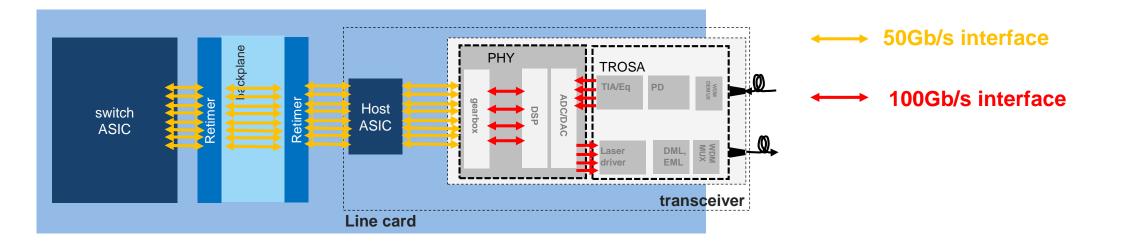
400G SLOWY RAMPING

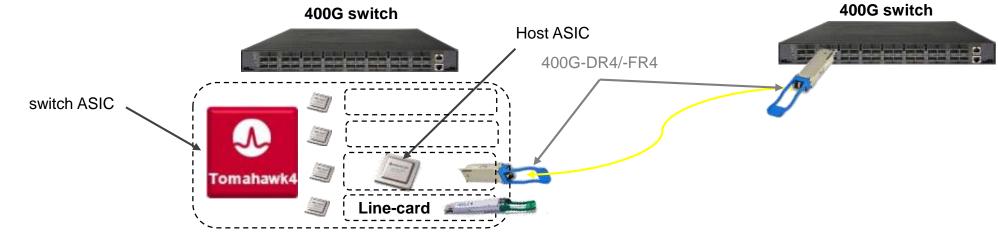
- Status @ Hyperscale DC's (Source LightCounting)
 - 400GbE DR4 delayed at **AWS** (chip)
 - 200GbE just started at Facebook
 - 2x200GbE slow start at Google
- What is slowing down 400G?
 - 100G PSM4 (<2\$/Gb) vs 400G-DR4 (~4\$/Gb)
 - <30pj/bit for CWDM4, >35pj/bit for 400G-DR4
 - Technical issues: Interoperability, margin (BER vs. FLR)


* 400G-FR4, configured 100G CWDM4 mode

* 400G-SR8, configured in 2 x 100-SR4 mode

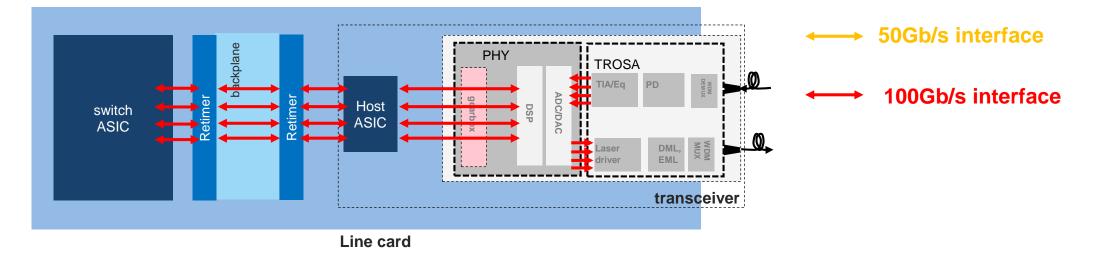
2020: Technology crossroads for R&D




⁵¹²x200G SerDes (?)

2020: Technology crossroads for R&D

100G SERIAL ELECTRICAL



2020: Technology crossroads for R&D

100G SERIAL ELECTRICAL

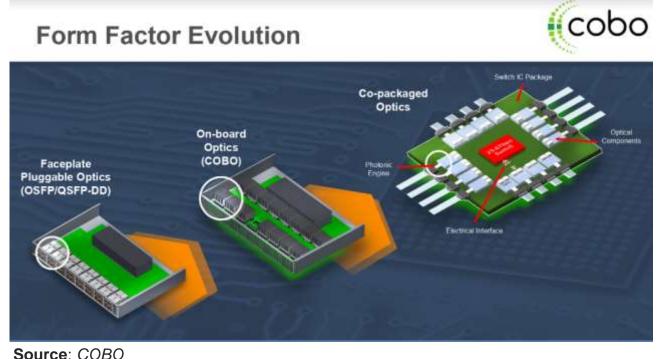
Standards

- IEEE 802.3ck
- OIF-CEI 5.0

Benefits

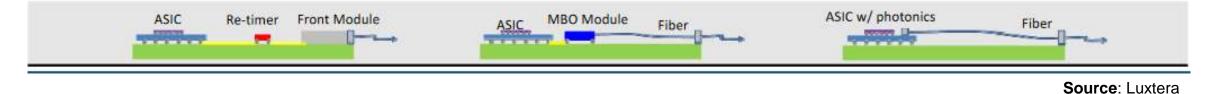
- Reduced power consumption (no gearbox)
- 800G-ready (8 lanes)

Challenges compared to 50G


- High Signal Integrity
- Higher Channel Losses & reflections
- Complex equalization (CTLE+DFE)

The rise of on-boards and co-package optics

IN A NUTSHELL


- On-Board Optics: Optical modules mounted on PCB
- Co-packaged optics: Optical engines co-packaged with switching ASIC
- Silicon photonics: Integration of electronics and photonic circuits in the same technology platform
- Industry initiatives
 - Consortium for On-Board Optics, COBO
 - Co-Packaged Optics Collaboration, CPO
 - CWDM-MSA
- Some 2020 CPO announcements
 - 12.8 Tbps switch with 1.6Tb/s optics (Intel)
 - 25.6T OptoASIC Switch system (Rockley)
 - 3.2 Tbps TOR switch (Accton, Cisco)
 - and much more ...

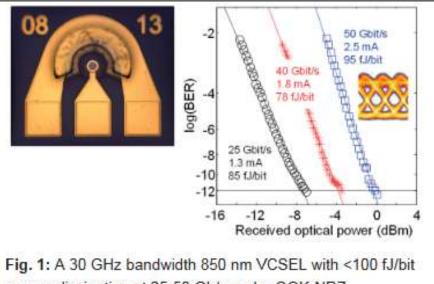
The rise of on-boards and co-package optics

EXPECTED BENEFITS AND CHALLENGES

- Benefits
 - Bring optics closer to ASICs
 - Removed or simplified re-timer, 75% power reduction compared to classical PCB
 - Switch bandwidth scalability: reduced size & footprint
 - Silicon scale (CPO only)
 - Leverage well-known and rapidly scalable fabrication CMOS fab environment
 - Reduce packaging cost (80% of the total TRX cost in 2015)

Challenges

- Lack of flexibility (e.g. replacing defect optical engines, fixed optical interfaces)
- Complex thermal and mechanical design
- Manufacturing complexity and yield (CPO only)


Technologies for lowering Data Center footprint

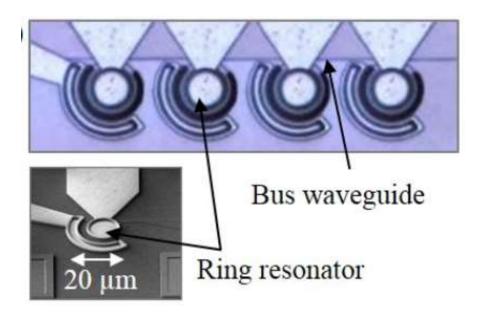
Technologies for lowering Data Center footprint

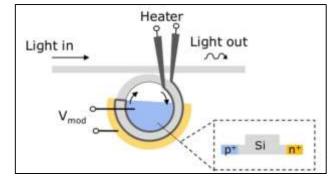
OVERVIEW

- CMOS process
- VCSEL
- Photonics structures
- Materials
- Integrated Photonics
 - Monolithic integration
 - Hybrid Integration

energy dissipation at 25-50 Gb/s under OOK-NRZ

modulation.

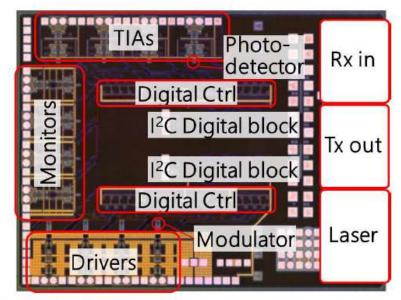



Source: A. Larsson and al.

MONOLITIC INTEGRATION, E.G. RANOVUS

SOI Platform

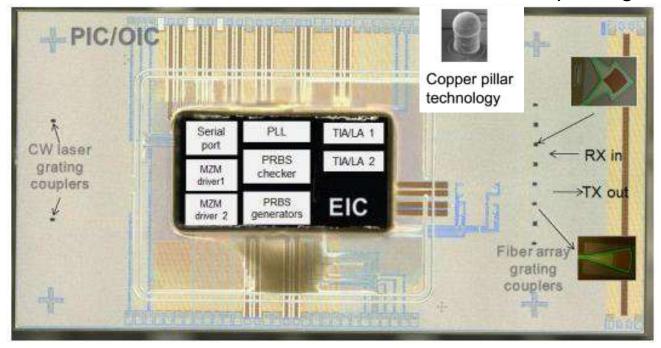
- Heater tunes ring resonance frequency
- QD multiwavelength laser (external)
- Benefit (quoting Ranovus)
 - 800G-3.2Tb/s per photonic engine
 - 100Gb/s (50Gbaud PAM4) modulation
 - 50% power consumption (0.2 pj/bit per ring)
 - 75% cost/Gbps reduction
 - Reduced latency


source ADVA, Ranovus

MONOLITIC INTEGRATION, E.G. SICOYA

SiGe-BiCMOS

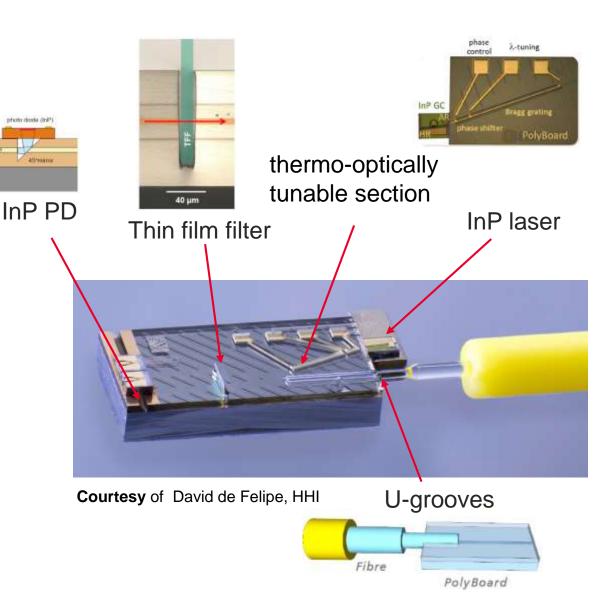
- 1D photonic crystal Fabry-perot resonator waveguide
- Modulation achieved by carrier depletion
- Fully integrated modulator drivers and TIAs
- Laser coupling via gratings
- Benefit (quoting Sicoya)
 - Higher yield using mature CMOS
 - Small footprint



Courtesy of Abdul Rahim, ePIXfab

HYBRID INTEGRATION, E.G. FINISAR

- Hybrid integration of electronics and photonic ICs e.g. using the copper pillar technology
- STMicroelectronics PIC25G silicon photonics technology
- Coupling from fiber and from the laser is done by using grating couplers
- Distributed loading of the transmission line electrode


O- band, 56 Gb/s @ 2Km in a CFP4 package

Courtesy of Abdul Rahim, ePIXfab

HYBRID INTEGRATION, E.G. POLYMER

- Polymer for integrating technologies from different material platforms
- Key building blocks
 - Thin film element for λ and polarization filtering
 - Polymer thermo-optically tunable brag grating & phase shifter
 - PD, laser (Inp; GaAs)
 - Modulator (SiNx, LiNbO3)
- TERIPHIC EU funded project
 - 800G transceivers
 - power consumption reduced by 50%
 - 0.3 €/Gb/s.

Summary & Resources

- Insatiable demand for capacity and switching bandwidth in the Data Center will continue to fuel innovation - 100Tb switch in 2025!
- Scaling current paradigm to 50Tb switch seems very challenging Sub\$/bit and 5pj/bit achievable with pluggable?
- Resources and related Keysight solutions
 - Unlocking 400G by
 - Increasing manufacturing throughput with fast and reliable T&M solution KS8108A
 - Ensuring interoperability by FEC-aware compliance testing <u>N4891A</u>
 - Reducing impact of yield with early functional on-wafer test <u>N7700210C</u>
 - Paving the way for 1.6TbE by
 - Investigating 200G/lane implementation <u>M8194A</u>
 - Measuring channel beyond 60GHz <u>N1930B</u>
 - Characterizing optical components up to 110GHZ <u>N4372E</u>

