

Enabling Real World Multiple Object Radar Simulation in a Small, Controlled and Confined Test Environment without Compromise

Brian Su

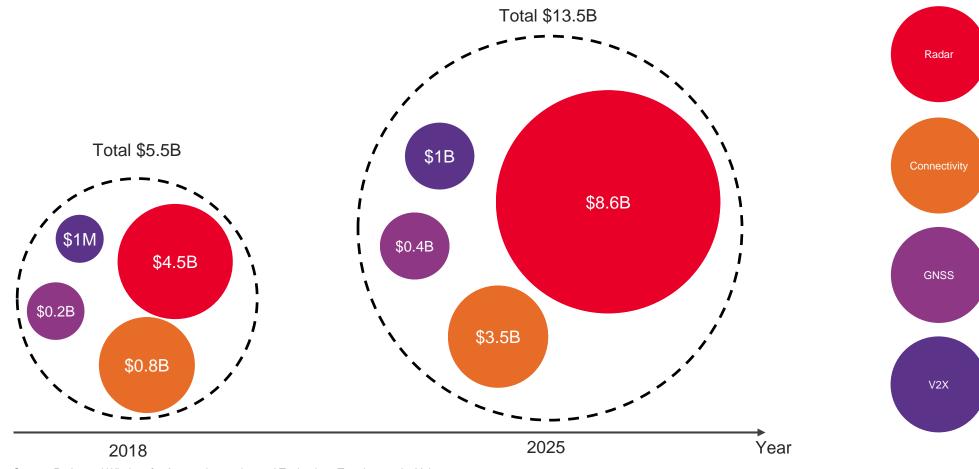
Sr. Project Manager / Keysight Technologies

Agenda

Autonomous Vehicle and Automotive Radar Market Overview Challenges Faced by Automotive Radar Keysight's Contribution to Address the Automotive Radar Challenges Keysight Radar Portfolio

Autonomous Vehicle and Automotive Radar Market Overview

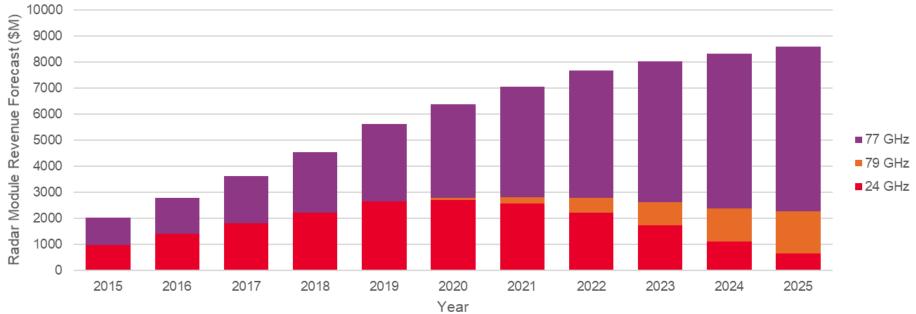
Autonomous Vehicle Overview


ENABLING TECHNOLOGY AND TYPICAL SENSORS CONTENT

Autonomous Driving Level / Type of Sensors	Level 1 (Drive Assistance)	Level 2 (Partial Automation)	Level 3 (Conditional Automation)	Level 4 (High Automation)	Level 5 (Automation)	
Human level monitoring of Environment			Driver must be available to take control of the vehicle at all times with short notice	Vehicle is capable of <i>performing all driving</i> functions <i>with conditions</i> . Driver may have the option to control the vehicle	Vehicle is capable of <i>performing all driving</i> functions <i>unconditionally</i> . Driver may have the option to control the vehicle	
Application Example	Adaptive Cruise Control or Lane Centering	Adaptive Cruise Control and Lane Centering at the same time	Traffic jam chauffeur	 Driverless Taxi Driving with or without pedals or steering wheel 		
Ultrasonic	4	8	8	8	8 to 10	
Long Radar	1	1	2	2	2 to 4	
Short Radar	2	2 to 4	2 to 4	4 to 6	4 to 8	
Camera / Short Lidar	1	2 to 4	7	7 to 8	9 to 10	
Long Lidar	0 to 1	0 to 1	1 to 2	2 to 4	4	
V2X	0 to 1	0 to 1	1	1	1 to 2	
GNSS	0 to 1	0 to 1	1	1	1	
Total	8 to 11	13 to 20	22 to 25	25 to 30	29 to 39	
Rollout Timing	2012	2016	2018	2020	> 2025	

Autonomous Vehicle Market Dynamic

RADAR VS OTHER WIRELESS TECHNOLOGIES MARKET TAM

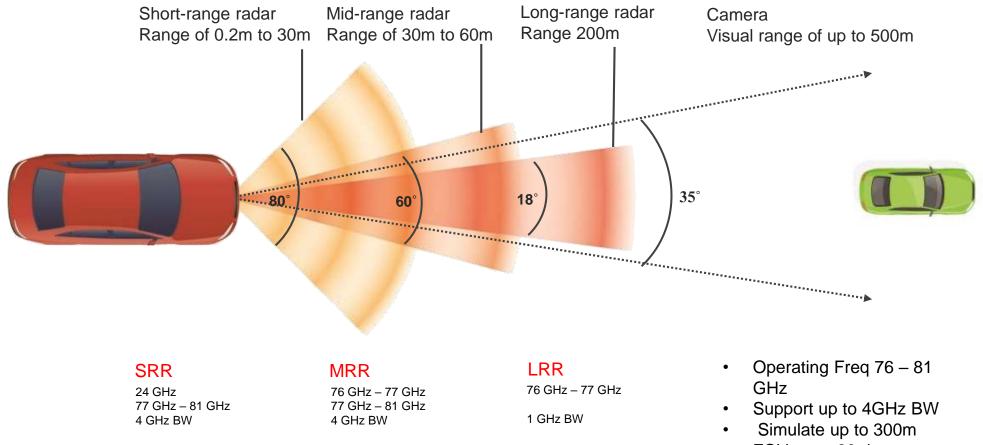


Source: Radar and Wireless for Automotive market and Technology Trends 2019 by Yole

Autonomous Radar Market Dynamic

RADAR TRENDS AND OUTLOOK

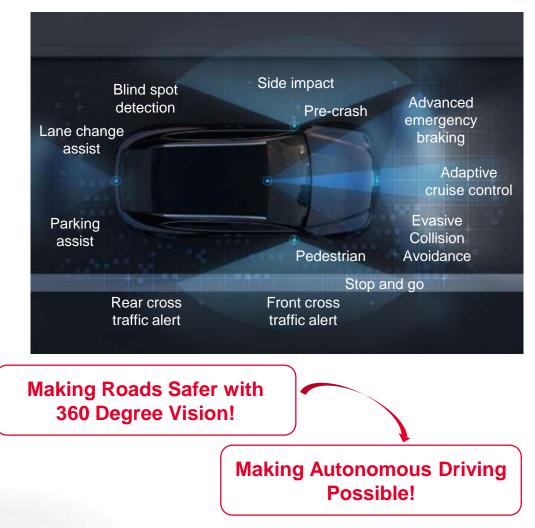
Radar Module TAM


Source: Radar and Wireless for Automotive market and Technology Trends 2019 by Yole

- 77 GHz LRR representing > 50% of the Radar module TAM
- Observed similar trend as the semiconductor outlook with 24 GHz ramping down and replaced by 79GHz
- Initiative of migrating from 24 GHz to 79GHz to improve resolution and accuracy. In addition, there is also cost leverage between 79GHz and 77 GHz.

Automotive Radar Technology

RADAR SENSORS CHARACTERISTIC



• FOV up to 80 degree

Automotive Radar Application Examples

MAKING ROAD SAFER

Auto Emergency Braking / Pretensioning Seatbelts

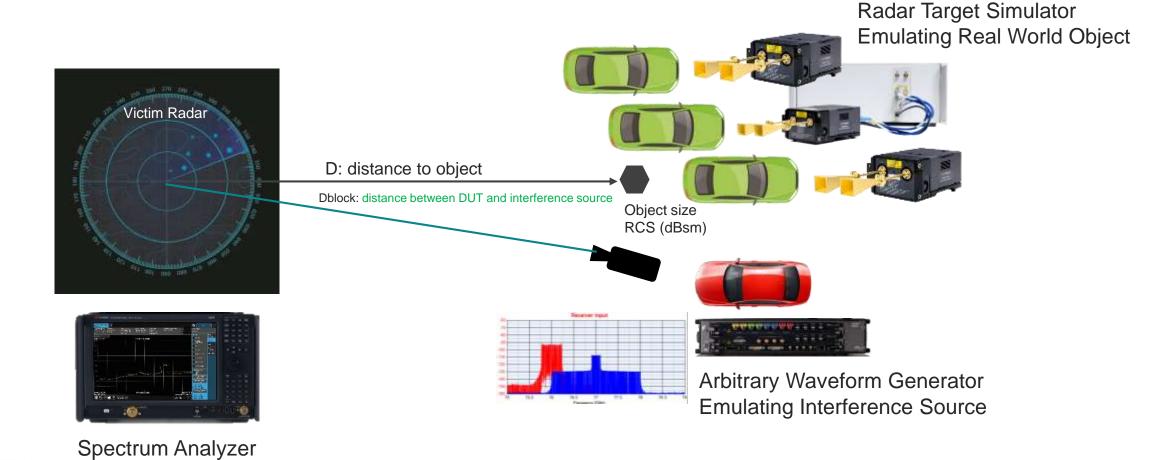
Blind Spot Monitoring

Lane Change Assist

Adaptive Cruise Control

Real Collision Protection

Stop & Go Cruise Control



Automotive Radar Testing

Enabling Signal Analysis

KEYSIGHT TECHNOLOGIES

KEYSIGHT BRINGING REAL WORLD TEST ENVIRONMENT TO LAB

Keysight World 2020 Taipei

9

Challenges Faced by Automotive Radar

Automotive Radar Sensor Test Challenges

FUTURE RADAR TOWARDS LEVEL 5 AUTONOMOUS DRIVING

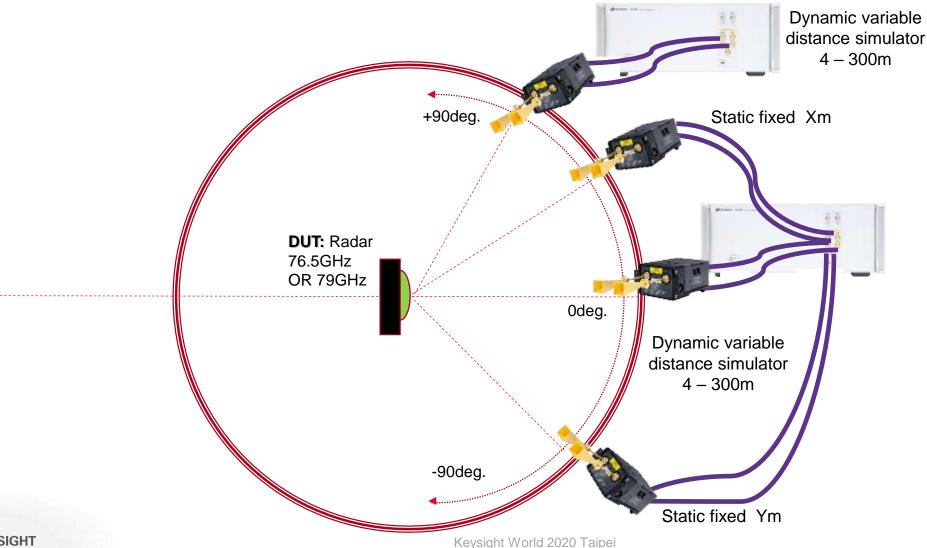
Emulate dynamic real world simulation: Complex multi-target scenario simulation

Differentiate nearby objects from one to another: High resolution testing

Enable imaging radar sensor far field simulation: **Cost effective** ways to test imaging radar

Contrast large object: **3D elevation testing and characterization**

Zero missed, ensuring all objects are accountable: Interference mitigation

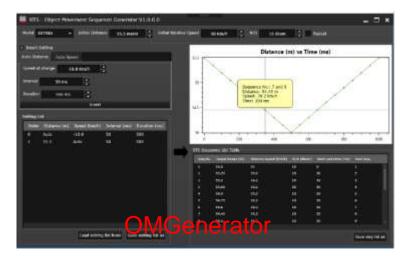


Keysight's Contribution to Address the Automotive Radar Challenges

Emulate Dynamic Real World Complex Scenario

KEYSIGHT MULTI TARGET FLEXIBLE REMOTE HEAD RTS

Ease Complex Scenario Implementation


KEYSIGHT OBJECT MOVEMENT GENERATOR SEQUENCE CONTROL

Simulate moving Object

- Configurable sequence setting for , RCS and Doppler
- Sequence table will display all sequence list up to 1024 (0 to 1023 sequences)
- Option to use OMGenerator to create sequence list or load from predefined text or excel spreadsheet

OMGenerator

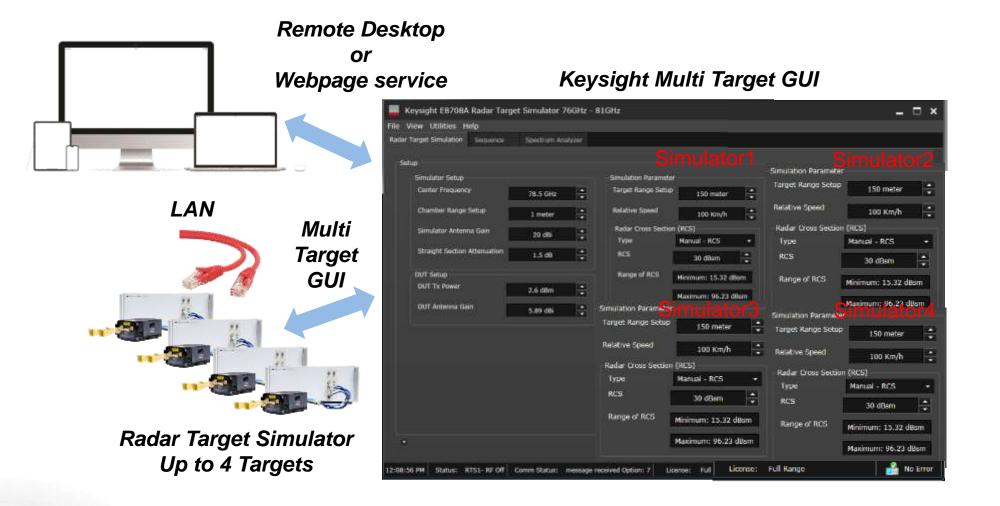
- A standalone tool to assist user to create object movement sequence before import to RTS SFP
- Option to control either distance or speed
 - Auto Distance: Define object speed and time duration
 and interval
 - Auto Speed: Define object distance and time duration
 and interval
- With preview graph display

			\$1. M		
inter and		FROM AN DAVID DOUTS	and the state	Contrast the Local	not be
					Provide and Provid
1	W.	1 C	11	100	1
	190				
	190			im:	
				180	
ŧ	110			100	
	100			100	
•					
		0			Conclute New . Give New and

Differentiate Nearby Object

KEYSIGHT MULTI TARGET FLEXIBLE REMOTE HEAD RTS

4GHz Radar Sensor


Objective of testing

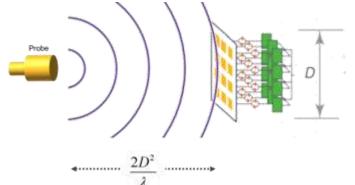
- To differentiate two independent objects at the same velocity but different distances and vice versa same distances but different velocity
- Two flexible remote head with independent from 3m to 300m, velocity form +/- 700Km/h and different RCS from -20 to 40 dBsm
- Direct connection via WR12 waveguide or Over The Air via horn antenna

Independently Control Individual Simulated Target

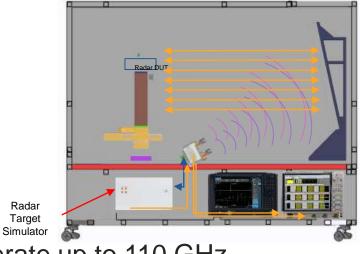
KEYSIGHT MULTI TARGET SIMULATION SOFTWARE GUI

Scalable and Configurable Radar Target Simulator

KEYSIGHT E8718A HIGH RESOLUTION RTS


Description	Fixed distance RTS	+ variable distance	+ Doppler	+ SA	+ Multi AoA variable & fixed distance	+ Multi AoA variable distance RTS
Key Features	 Dual Horn 76-81GHz 4GHz BW 75 & 150m RCS Laser alignment 	 4 – 300m with 0.1m resolution 0,03m resolution step (future option) 	 +/- 360 Km/h with 0.1Km/h resolution 	Enable DUT EIRP and OBW parallel measureme nt	 3 AoA with 1x Dynamic Scenario 2x Fixed Distance 76-81GHz with 4GHz BW, distance & Doppler 	 Multi AoA with Dynamic Scenario 76-81GHz with 4GHz BW, distance & Doppler
Hardware Configuration	Core System	Core system internal HW or SW upgrade		Multi-Head	Multi RTS	

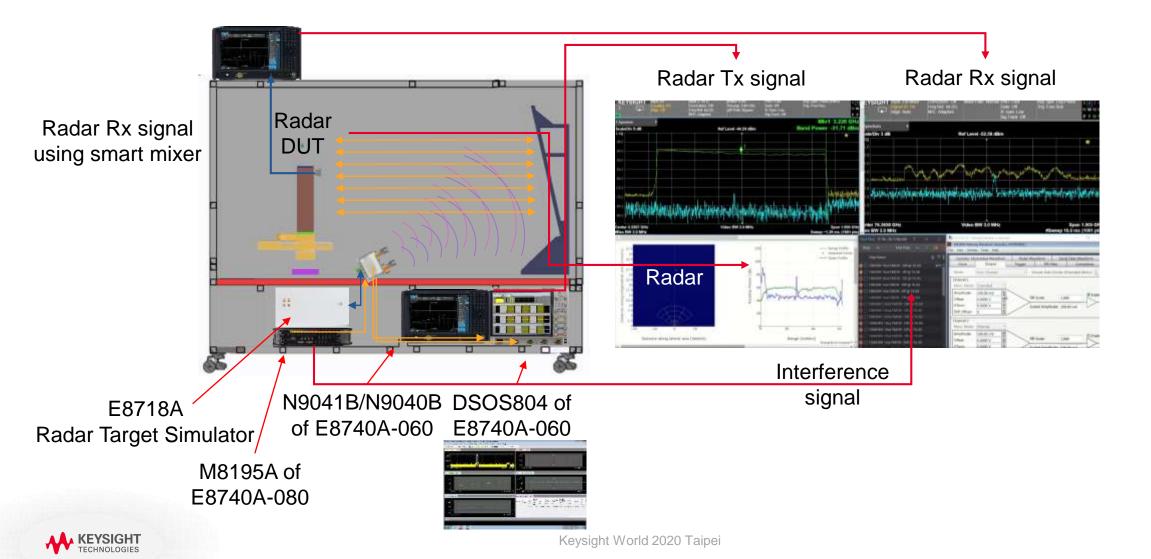
Enable Imaging Radar Sensor Far Field Simulation


COST EFFECTIVE SIMULATION WITH KEYSIGHT CATR ANECHOIC CHAMBER

Imaging Radar Challenges

- Parabolic reflector converts the diverging beam into a plane-wave (far-field) beam
- DUT to be placed in the Quite Zone
- Rotation allows Azimuth characterization
- Reciprocal operation enables Tx and Rx test
- Integrated and calibrated OTA test solution

Keysight CATR Chamber



- Operate up to 110 GHz
- Quite Zone 30cm
- Amplitude Tape 1 dB
- Amplitude Ripple < +/- 0.5 dB
- Phase Variation < 10 deg

Zero Missed, Ensuring All Objects Are Accountable

KEYSIGHT AUTOMOTIVE INTERFERENCE TEST SOLUTION

19

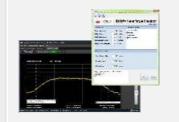
Keysight's Automotive Radar Regulator Test Solution

E8740A Automotive Radar Solution

>5GHZ UP TO 110GHZ SIGNAL ANALYSIS AND FLEXIBLE SIGNAL GENERATION

Radar Target Simulator

Signal Analysis Solution (Tx)



E8718A - 77 / 79 GHz with 1 / 4GHz BW

Radar Target simulator for Automotive radar functional test

- 76-77GHz w/1GHz B/W
- 77-81GHz w/4GHz B/W
- Range from 4m to 300m, 0.1m Resolution
- 1 (full) + 2 Fixed Targets
- Options for OBW and PWR
- Options for dual or single antenna

OBW and Power measurement

E8740A-010 Radar RF SA

Leading cost effective Auto Radar RF test tool • 10 Hz to 26.5 GHz.

analysis

60 GHz to 90 GHz FMCW RF

89600 VSA software

X-Series applications

Ready-to-use RF measurements

FMCW X-App for RF testing

E8740A-020, 030 **Basic SA** Optimum choice for

Auto radar signal quality test • 60 GHz to 90 GHz.

• 2.5 GHz BW. >5GHz

BW FMCW Quality analysis

E8740A-040.050 Advanced SA Benchmark for

demanding applications

• 10 Hz to 26.5 GHz. 60 GHz to 90 GHz • 2.5 GHz BW , >5GHz

BW FMCW Quality analysis

E8740A-060 **Performance SA**

E8740A-090

solution

Emissions test

Conformance test

Operating frequency

• 2.4 mm. 1 mm input

range, peak power,

unwanted emission,

mean power, and more

• 0 to 330 GHz

Wide-open performance • 3 Hz to 110 GHz

- >5 GHz BW for FMCW
- Quality analysis DANL-171dBm/Hz@1GHz, -150dBm/Hz up to 110GHz
- 2.4 mm, 1 mm input
- Spurious Emissions tests

Signal Generation Solution (Rx)

E8740A-070 Performance SG

Wide-open performance

- 60 GHz to 90 GHz
- >5 GHz 3dB BW
- FM, PM, FMCW, pulse sequence, MFSK, custom OFDM

E8740A-080 Interference solution

Flexible wideband interference signal generation

- Full test set-up for ETSI interference test
- 60 GHz to 90 GHz
- >5 GHz 3dB BW
- CW, FMCW, pulse, MFSK, custom OFDM, 5G backhaul.....

SystemVue

W1908 Auto radar library measurements Signal Studio

N7608C Pulse/FCM/FMCW/MFSK signal creation

Integrated S/W platform for

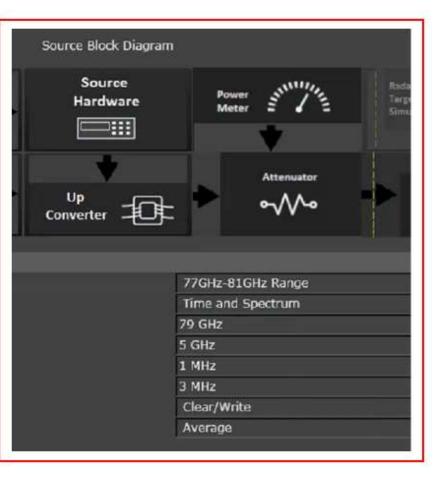
RX/interference test sequence

KS83RX0A Automation platform for automotive radar

Accelerate Your Radar-Test Workflow

KS8320A automation platform for automotive radar

Provides suite of standards-compliant routines

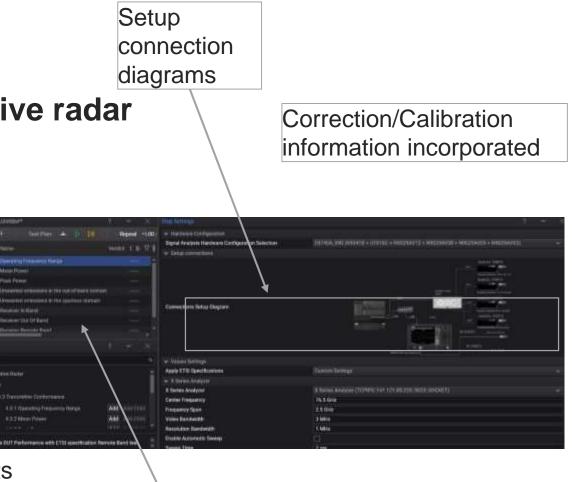

• Automated functions simplify programming, customization & testing

Accelerates testing & validation

- Radar transmitters & receivers
- Interference immunity

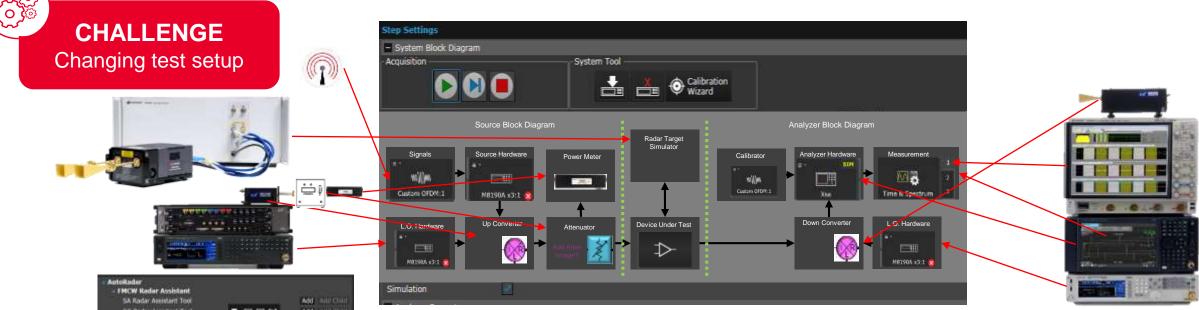
• Keeps your team up to date with evolving standards

• Timely updates



Streamline test development

KS83200A automation platform for automotive radar


- Easy-to-use UI for test configuration & sequencing
- Libraries of test routines for specific automotive radars
- Pre-defined test setups for major standards
 - ETSI, TELEC, FCC, ARIB, KCC, & more
- Functional blocks for testing of transmitters & receivers
 - Signal analysis
 - Signal generation
 - Signal quality
- Functional blocks for testing versus interference requirements
- Customizable test scenarios that simplify creation of unique test cases
- Links to high-frequency instruments, with calibration information

Automotive Radar Test S/W platform

STRAIGHT FORWARD EASY SET UP AND TEST U/I AND TEST SEQUENCE

	Add				
医复回器	Add				
ALC: NO.					
76GHz 4.4.2 Receiver spurious emissions					
765Hz 4.4.3 Receiver in-band, out-of-band and remote-ba					
760Hz 4.4.4 Receiver sensitivity					
79GHz 4.4.2 Receiver spurious amissions					
79GHz 4.4.3 Receiver in-band, out-of-band and remote-ba.					
29684g 4, 4, 4 Receiver sensitivity					
70GHz 4.3.1 Transmitter Operating Frequency Range					
76GHz 4.3.2 Transmitter Mean Power					
DWOIT .	Add				
od unessions out-of-band.	Add				
ted emissions in the sourt	Add				
ng Frequency Range	Adid				
Canel .	Add				
Will	Add				
bred-to-two annexistres bot	Add				
od amesions in the spuri	Add				
	of-of-band and remote-ba. missions ut-of-band and remote-ba. Ing Frequency Range Swer	International Add anti-of-band and remote-ba. Add Add antissions Add tot-of-band and remote-ba. Add Add antissions Add anti-of-band Add anti-of-band Add antissions out-of-band. Add tot emissions in the sourt. Add and emissions out-of-band. Add antis emissions out-of-band. Add			

BENEFITS

Preconfigured routines for testing Easy test flow creation

ETSI Regulations in Europe

77GHz ETSI EN 301 091-1 V2.1.1 2017 (since 1998)

76GHz to 77GHz BW = 1GHz max BW = 500-800MHz typ.

- Max Power: +55dBm e.i.r.p.
- Range: LRR (250m, 17-30deg FOV), MRR (60m, 56deg FOV)
- Resolution: OK → LRR (100cm,1deg), MRR (25cm, 4deg)

24GHz UWB ETSI EN 302 288 v2.1.1 2017 (since 2005)

22Hz to 26.65GHz BW = 4.65GHz max (until 2013+4yr for Europe)

24.25GHz to 26.65GHz BW = 2.4GHz max (until 2018+4yr for Europe) BW = 1.5GHz typ.

- Max Power: -41dBm / MHz e.i. r.p.
- Range: SRR (30m, 120deg FOV), MRR (80m, 16deg FOV)
- Resolution: GOOD → SRR (20cm, 2deg), MRR (20cm, 0.6deg)

79GHz ETSI EN 302 264 V2.1.1 2017 (since 2009)

> 77GHz to 81GHz BW = 4GHz max BW = 1-2GHz typ.

- Max Power: -9dBm / MHz e.i.r.p.
- Range: SRR (30m), MRR (80m)
- Resolution: VERY GOOD (4cm to 8cm)

24GHz ISM NB ETSI EN 302 858 v2.1.1 2016 (since 2011)

> 24.05GHz to 24.25GHz BW = 200MHz max BW = 100-200MHz typ. 24.05GHz to 24.50GHz BW = 400MHz max

- Max Power: +20dBm e.i.r.p.
- Range: SRR (30m, 150deg FOV), MRR (70m, narrower FOV)
- Resolution: NOT GOOD → (~75cm)

ETSI EN 301 489 V1.1.1 2016

Electromagnetic Compatibility (EMC) standard for radio equipment and services EN 301 489-51 : Part 51: Specific conditions for Automotive, Ground based Vehicles and Surveillance Radar Devices using 24,05 GHz to 24,25 GHz, 24,05 GHz to 24,5 GHz, 76 GHz to 77 GHz and 77 GHz to 81 GHz

ETSI EN 303 396 V1.1.1 2016

Short Range Devices; Measurement Techniques for Automotive and Surveillance

2000

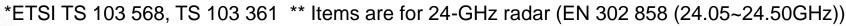
2010

Time

RF Regulatory Test Items

ETSI

Transmitter Conformance Requirements


- Operating frequency range
- Mean power (EN 301 091-1)
- Mean power spectral density (EN 302-264)
- Peak power
- Unwanted emission in the out-of-band domain
- Unwanted emission in the spurious domain

Receiver Conformance Requirements

- Receiver spurious emissions
- Receiver in-band, out-of-band and remote band signals handling
- Receiver sensitivity
- *Rx / Interference testing

**Requirements for Spectrum Access (EN 302 858)

- Spectrum access duty cycle
- · Dwell time and repetition time
- Frequency modulation range

Keysight World 2020 Taipei

Standards

Basic Steps Flow Control

✓ 4.3 Transmitter Conformance

4.3.2 Mean Power

4.3.3 Peak Power

4.4 Receiver Conformance

4.4.3 Receiver In-Band

4.4.3 Receiver Out Of Band

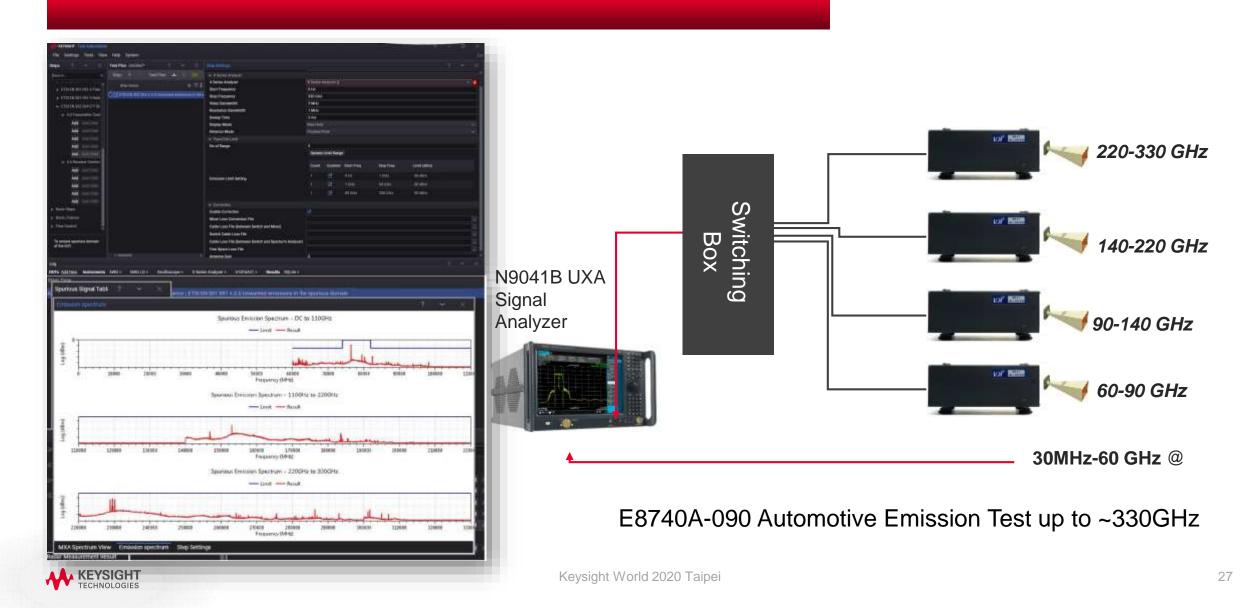
4.4.3 Receiver Remote Band

ter \$5.01 GH

IN THE S & MILL

4.3.1 Operating Frequency Range

4.4.2 Receiver spurious emissions

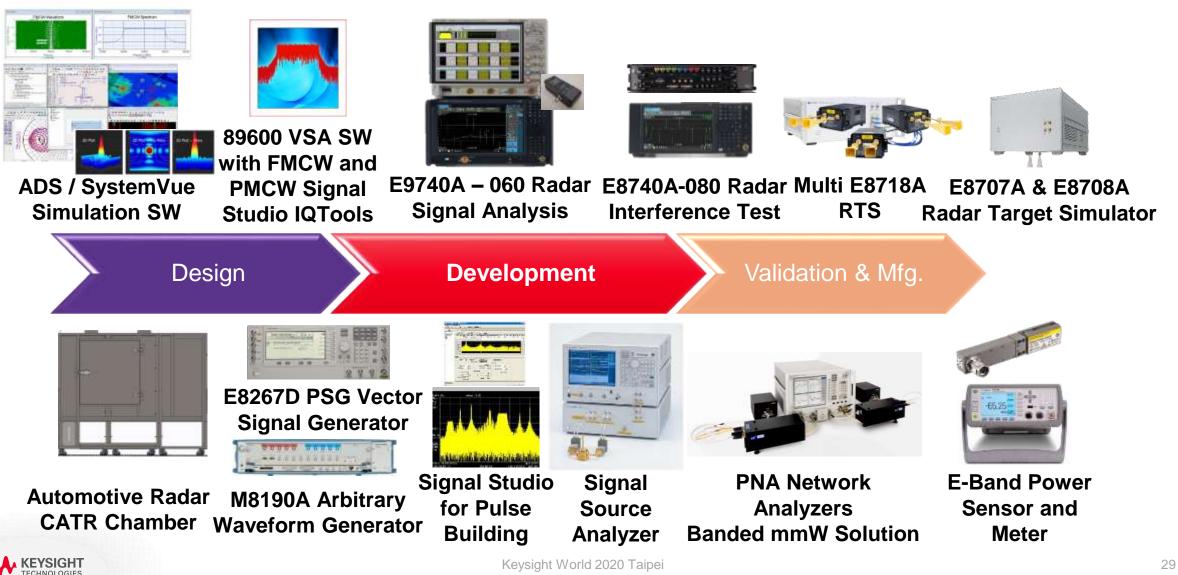

4.3.4 Unwanted emissions in the out-of-band.

4.3.5 Unwanted emissions in the sourious do____

Add Add Child

Wideo BW 3.0 Mills

Unwanted Emissions in Spurious-Domain Measurements



Keysight Radar Portfolio

Automotive Radar Test Solution

KEYSIGHT AUTOMOTIVE PRODUCT PORTFOLIO

